Comm. Korean Math. Soc. 6(1991), No. 2, pp. 187-192

ISÉKI'S CONDITION (S) ON SOME BCK-ALGEBRAS

YOUNG BAE JUN

1. Introduction and preliminaries

In 1966, Iséki[3] and Imai and Iséki[2] introduced the notion of BCKalgebras. A BCK-algebra is a nonempty set X together with a binary operation * and a special element 0 for which the following axioms hold for all $x, y, z \in X$:

(1) $(x * y) * (x * z) \le z * y$, (2) $x * (x * y) \le y$, (3) $x \le x$, (4) $0 \le x$, (5) $x \le y$ and $y \le x$ imply x = y, where $x \le y$ is defined by x * y = 0.

In any BCK-algebra X, the following relations hold for all $x, y, z \in X$: (6) $x \leq y$ implies $x * z \leq y * z$ and $z * y \leq z * x$. (7) $x \leq y$ and $y \leq z$ imply $x \leq z$. (8) (x * y) * z = (x * z) * y. (9) $x * y \leq x$. (10) x * 0 = x.

A BCK-algebra X is said to be *bounded* if there is an element $1 \in X$ such that $x \leq 1$ for all $x \in X$. If $x \wedge y = y \wedge x$ for all $x, y \in X$, where $x \wedge y = y * (y * x)$, then X is said to be *commutative*. We say that X is *positive implicative* if (x * z) * (y * z) = (x * y) * z for all $x, y, z \in X$, and that X is *implicative* if x * (y * x) = x for all $x, y \in X$. Every implicative BCK-algebra is commutative and positive implicative(see [5]).

A nonempty subset I of a BCK-algebra X is called an *ideal* of X if (11) $0 \in I$, (12) $x \in I$ and $y * x \in I$ imply that $y \in I$.

Received November 19, 1990.

In [4], Iséki introduced the notion of a BCK-algebra with condition (S). The object of this paper is to investigate the Iséki's condition (S) on some BCK-algebras.

2. Condition (S) on some BCK-algebras

DEFINITION 2.1([4]). A BCK-algebra X is said to be with condition (S) if for any fixed elements $y, z \in X$, the set

$$A(y,z) = \{x \in X : x * y \le z\}$$

has the greatest element which we denote by $y \circ z$.

In any BCK-algebra X with condition (S), the following hold for all $x, y, z \in X$ (see [4]): (13) $x \circ 0 = 0 \circ x = x$. (14) $x * (y \circ z) = (x * y) * z$. In case X is also implicative, then (15) $(x \circ y) * z = (x * z) \circ (y * z)$. (16) $x \circ x = x$.

DEFINITION 2.2([1]). Let X be a commutative BCK-algebra and Y a subalgebra of X. X will be called a quotient BCK-algebra of Y if for every $x_1, x_2, x \in X$ with $x_1 \neq x_2$, there exists an element $y \in Y$ such that $x_1 \wedge y \neq x_2 \wedge y$ and $x \wedge y \in Y$.

DEFINITION 2.3([1]). An ideal I of a bounded implicative BCK-algebra X is said to be dense in X if X is a quotient BCK-algebra of I.

DEFINITION 2.4([1]). Let I be an ideal of a bounded implicative BCK-algebra X. A mapping $f: I \to X$ is called a partial \wedge -homomorphism if $f(x \wedge y) = f(x) \wedge y$ for all $x \in I$ and $y \in X$.

We denote the set of all partial \wedge -homomorphisms from an ideal I of a bounded implicative BCK-algebra X into X by $Hom_X(I, X)$. It is

shown in [1] that $Hom_X(I, X)$ is a bounded implicative BCK-algebra if I is a dense ideal of X.

PROPOSITION 2.5. Let X be a bounded implicative BCK-algebra with condition (S) and I a dense ideal of X. Then the algebra $Hom_X(I,X)$ satisfies also condition (S).

Proof. Define an operation \circ on $Hom_X(I, X)$ by

$$(f \circ g)(x) = f(x) \circ g(x)$$

for all $x \in I$ and $f, g \in Hom_X(I, X)$. Then $f \circ g$ is clearly well-defined. Now,

$$\{(f \circ g) * f\}(x)$$

$$= (f \circ g)(x) * f(x)$$

$$= \{f(x) \circ g(x)\} * f(x)$$

$$= \{f(x) * f(x)\} \circ \{g(x) * f(x)\}$$
 by (15)
$$= 0 \circ \{g(x) * f(x)\}$$

$$= g(x) * f(x)$$
 by (13)
$$\le g(x)$$
 by (9)

for all $x \in I$. This shows that $(f \circ g) * f \leq g$. Let $h \in Hom_X(I, X)$ be such that $h * f \leq g$. Then

$$\{h * (f \circ g)\}(x) \\ = h(x) * \{f(x) \circ g(x)\} \\ = \{h(x) * f(x)\} * g(x) \qquad \text{by (14)} \\ = (h * f)(x) * g(x) \\ = 0$$

for all $x \in I$, which implies that $h * (f \circ g) = 0$, that is, $h \leq f \circ g$. This proves that $Hom_X(I, X)$ satisfies condition (S).

Let X be a bounded implicative BCK-algebra and we set

$$H_X = \cup \{Hom_X(I,X) : I \in X^{\Delta}\}$$

Young Bae Jun

where X^{Δ} is the set of all dense ideals of X. Define a binary operation * and an order relation \leq on H_X as follows: for $f, g \in H_X$,

$$(f * g)(x) = f(x) * g(x)$$

and

$$f \leq g \Longleftrightarrow f(x) \leq g(x)$$

for all $x \in I_f \cap I_g$, where I_f and I_g are the domain of f and g respectively. It is shown in [1] that H_X is a bounded implicative BCK-algebra.

PROPOSITION 2.6. If X is a bounded implicative BCK-algebra with condition (S), then H_X is also with condition (S).

Proof. Let $f, g \in H_X$. Then $f \in Hom_X(I_f, X)$ and $g \in Hom_X(I_g, X)$ for some $I_f, I_g \in X^{\Delta}$. An operation \circ on H_X defined by $(f \circ g)(x) = f(x) \circ g(x)$ for all $x \in I_f \cap I_g$ is well-defined, and

$$\{(f \circ g) * f\}(x) \\ = \{f(x) \circ g(x)\} * f(x) \\ = \{f(x) * f(x)\} \circ \{g(x) * f(x)\} \\ = g(x) * f(x) \\ \leq g(x)$$

for all $x \in I_f \cap I_g$. This implies that $(f \circ g) * f \leq g$. Let $h \in H_X$ be such that $h * f \leq g$. Then $h \in Hom_X(I_h, X)$, $I_h \in X^{\Delta}$ and $h * f \leq g$. We now see that

$$\{h * (f \circ g)\}(x) \\=h(x) * \{f(x) \circ g(x)\} \\=\{h(x) * f(x)\} * g(x) \\=(h * f)(x) * g(x) \\=0$$

for all $x \in I_f \cap I_g \cap I_h$. This means that $h \leq f \circ g$, showing that H_X satisfies condition (S).

190

Define a relation ~ on H_X as follows: for $f, g \in H_X$, $f \sim g \iff f(x) = g(x)$ on some $I \subset I_f \cap I_g$.

Clearly \sim is an equivalence relation. For an element $f \in H_X$, its equivalence class will be denoted by [f] and Q(X) will denote the set of all equivalence classes. We now define a binary operation * and an order relation \leq on Q(X) as follows: for $[f], [g] \in Q(X)$,

$$[f] \ast [g] = [f \ast g]$$

and

$$[f] \leq [g] \Longleftrightarrow f \leq g.$$

Then Q(X) is a bounded implicative BCK-algebra(see [1]).

PROPOSITION 2.7. Let X be a bounded implicative BCK-algebra with condition (S). Then Q(X) satisfies also condition (S).

Proof. Let $[f], [g] \in Q(X)$ and define an operation \circ on Q(X) as follows:

$$[f] \circ [g] = [f \circ g].$$

Suppose that [f] = [f'] and [g] = [g'], where $[f], [f'], [g], [g'] \in Q(X)$. Then $f \sim f'$ and $g \sim g'$, that is, f(x) = f'(x) and g(x) = g'(x) on some $I' \subset I_f \cap I_{f'}$ and $I'' \subset I_g \cap I_{g'}$ respectively. It follows that $f(x) \circ g(x) = f'(x) \circ g'(x)$ for all $x \in I = I' \cap I''$. This means that $f \circ g \sim f' \circ g'$, that is, $[f \circ g] = [f' \circ g']$. Hence $[f] \circ [g]$ is well-defined. Now,

$$\{[f] \circ [g]\} * [f] \\ = [f \circ g] * [f] \\ = [(f \circ g) * f] \\ \le [g].$$

Let $[h] \in Q(X)$ be such that $[h] * [f] \leq [g]$. Then

$$[h] * ([f] \circ [g])$$

=[h * (f \circ g)]
=[(h * f) * g]
=([h] * [f]) * [g]
=[0].

Young Bae Jun

Hence $[h] \leq [f] \circ [g]$. This completes the proof.

By [4; Theorem 1 and Corollaries 6 - 7], we get the following:

COROLLARY 2.8. Let X be a bounded implicative BCK-algebra and I a dense ideal of X. Then the algebras $Hom_X(I,X)$, H_X and Q(X) are all commutative semigroups, semi-Brouwerian algebras and regular Griss algebras.

References

- 1. J. Ahsan, E.Y.Deeba and A.B.Thaheem, Maximal quotient BCK-algebras, Math. Japonica 34 (1989), 497-512.
- 2. Y. Imai and K. Iséki, On axiom systems of propositional calculi. XIV, Proc. Japan Acad. 42 (1966), 19-22.
- 3. K. Iséki, On axiom systems of propositional calculi. XXI, Proc. Japan Acad. 42 (1966), 441-442.
- 4. K. Iséki, BCK-algebras with condition (S), Math. Japonica 24 (1979), 107-119.
- 5. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea

192