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NON-oRIENTABLE MANIFOLDS

WITH A TOTAL ACTION

M. Ho KIM

o. Introduction

In section 1, we are going to study two types of those 4-manifolds
with a T2 action which we encounter in a classifying problem. As a
standard technique, by investigating the orbit spaces, we will get some
informations of the total spaces.

J. Pak classified, in [P], (n+ 1)-orientable manifolds with a T 2 action.
Since it is not found in any literature for the nonorientable case, we gave
the complete solution in section 2.

The author thanks for the support by the Ministry of Education.

1. 4-Manifolds with a T 2 action

Througout the paper, we adopt the following notation. Let SI be the
set of all complex numbers whose absolute value is 1, we denote exp21rz4>
as a point of SI, where 4> is a real number and exp is the exponential
function. Let S2 be the unit sphere in the 3 - dimensional Euclean space
R3

• We will use (pexp2n6,z) or vasa point of B2, where 0:5 p:5 1,
-1 :5 z :5 1, since R3 can be identified with the product of the complex
plane C and RI. Let Tn be the n times product of SI. Every manifold
is smooth and closed.

DEFINITION 1.1. Let f be a function from R2 to the 2 - dimensional
complex plance C2 defined by f(x,y) = (exp 21rzx,exp 21rzy). Given
relatively prime integers rn, n, we define the image of the straight line
mx + ny = 0 in R2 under f to be (rn, n).
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DEFINITION 1.2. A group G action on M is effective if gx = x, for all
x in M, implies 9 is the identity element in G. We denote the quotient
space (i.e. orbit space with "weights") by M jG. For example,

(m,n)

(m,n) x Z2

(m', n')

(m',n') X Z2

is a weighted disk. The weight at each interior point is the identity,
while we have divided up the boundary into 3 arcs. The 3 end points
of the arcs correspond to a fixed point, (m, n) X Z2 and (m', n') x Z2.
The interior of the arcs correspond to orbits whose stabilizers are (m, n),
(m', n') and Z2' A ~ group is generated by, for example, -1 X 1 in T 2 •

We denote it by < -1 xl>.
Consider nonorientable 4-manifolds with an effective T 2-action whose

orbit spaces are

(m,n)

(m,n) x Z2

(m', n')

(m', n') x Z2

Z2 X Z2

Then, by results in [K], [OR Il] and [Pal, there exists only one manifold
corresponding to each orbit space, up to T2-equvariant diffeomorphism.
Note that "weights" changes, in orbit spaces, by reparametrization of T2
do not affect the total spaces. By the effectiveness and differentiability,
the total space is diffeomorphic to one of two manifolds whose orbit
spaces are
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(1,0)

(I,O)x<-lxl>

< 1 x-I> < -lxl >
Z2 x Z2

(0,1)11(1,0)(0,1)

(O,I)x < 1 x -1 >
(I,O)x < -lxl >

< -1 x -1 > < -1 xl>
Z2 XZ2

I

(O,1)x < -lx-l >

H we let M}, M2 be manifolds corresponding to I and 11, according to
[B], that the orientable double covers M1 , M2 have the induced T2-action
and their orbit spaces are

(0,1) (1,0) and
(0,1)

o

(1,0)

According to Pao, M1 is diffeomorphic to (82 x 8 2
)/ < 4> > and M2

is diffeomorphic to (82 x 8 2
)/ < 'ljJ >, where 4> and 1/J are involutions of

8 2 x 8 2 defined by

4>«x,y,z),(x',y',z')) = «-x,-y,-z),(-x',y',z'))

'ljJ«x, Y, z), (x', Y', z')) = « -x, -V, -z), (-x', -V', -z'))

and < 4> > and < 1/J > are Z2 groups generated by 4> and 1/J respectively.
He showed that M1 is not homotopy equivalent to M2 , so we can

conclude that M1 is not homotopy equivalent to M2 • It is an interesting
fact that there are nonorientable double covers M; and M4 for M1 and
M2 whose orbit spaces are
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(1,0) (1,0)

(0,1)
(0,1) (0,1) (0,1)

and

(O,l)x < -1 x -1 > (O,l)x < -1,-1 >
< -1x-1 > (0,1)x < 1 x -1 > (O,l)x < 1,-1 >

< 1 x -1 >

From [K] , Mi = (82 x 82)/ < 'P > and M~ = (82 x 82
)/ < h >,

where 'P and h are involutions of 8 2 x 8 2 defined by

'P«x, y, z), (x', y'z'» = « -x, -y, -z), (-x', -y', z'»

h«x, y, z), (x', y', z'» = « -x, -y, -z), (x', y', z'».
Furthermore, we have the following diagrams of orbit spaces.

(l,O)x < -1 x 1 >

< 1 x -1 > < -1 xl>

Z2 X Z2

(1,0)

(O'l)O~l)
/ (10)

(1,0) ,

(',~~,')O (0,1)

< 1 x-I >
\ ,/

(0,1) (I,D)

(0,1)

(0,1)x < 1 x -1 >

(1,0)

(0,1) 0 (0,1)

I \
(1,0) (1,0)

(',~~,')O (0,1)

< -1 x -1 >\ ~---. I
(0,1) (1,0)

< -1 x-I> < -1 xl>
Z2X~

(0,1)

Thus M 1 = (S2 x S2)/ < 'P, </J > M2 = (S2 x S2)/ < 'l/J, h >. We obtain
'lTl(Mt} = 'lTl(M2 ) = Z2 x Z2 and 'lTi(M1 ) = 'lTi(M2 ) = Z x Z for i ~ 2 by
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the homotopy exact sequence. We can give appropriate T 2-actions on
M 1 and M 2 which produce the given orbit spaces as follows:

(exp(27l"w), exp(27l"z,8)) {(PI exp(27l"z8d, zd, (P2 exp(27l"z82 ), Z2)} --+

{(PI exp(27l"z(81 +a)), zd, (P2 exp(2n(82 + ,8)), Z2)}. Then

(1,0)

(0,1)

(1,0)

(0,1)

It can be checked that If', 4>, hand 'l/J commute with the T 2-action, and the
induced effective T 2-actions on (52 x 5 2)/ < If',4> > and (52 x 5 2)/ <
h, 'l/J > give the orbit spaces of I and II respectively.

Similarly, by considering closed 4-manifolds with an effective T2_
action whose orbit spaces are of the following type

(m,n) (m', n')

as in the previous case, the manifolds are diffeomorphic to one of the
three manifolds whose orbit spaces are
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< 1 x -1 > < -1 x 1 >
< -1 x -1 >

III

(0,1)

< -1 x -1 >
< -1 x -1 ::> <:: -1 x -1 >

< -1 xl> < 1 x -1 >

Let Mt, M 2 and Ma be the manifolds corresponding to I, II and III
respectively. By looking at their orientable covers, and using the results
in [Pa](Theorem VI.1), M l and Ma are not homotopy equivalent to M2 ,

but it is not known whether M l is diffeomorphic to Ma or not. The
slice theorem and simple observations prove that 1l"1(M1 ) = 1l"1(M2 ) =
1l"1(Ma) =< a,fJ,r I a2 = fJ2 = r 2 = e,afJ = fJa,fJr = rfJ >

2. (N + I)-Manifolds with TO+! action

In this section, we are going to show that if, M is a (n + 1)-dimensional
non-orientable manifold with an effective T n -action, then M is diffeo­
morphic to Rp2 X T n - l , K x T n - l , SI- X S2 X T n - 2 or KS x T n - 2 ,
n~2.

NOTATION 2.1. Let Rp2 be the projective plane. So we denote a
point of RP2 by [pexp 2n(J, z] , where [] means the equivalence relation.
In SI- x S2, I"V means every point (exp 21l"z(J, v) in SI x 52 is identified
with (- exp 21l"z(J, -v). Let Tn be the n times product of SI. K denote
the Klein bottle, and KS denote the total space of the non-trivial SI_
principal bundle over K.

When n = 2, W. Newman obtained the result (cf. [N]). So we will
give a proof by using techniques in [OR] and prove the general case.

LEMMA 2.2. Let M be a 3-dimensional manifold with an effective
T2-action. Then M is diffeomorpbic to K x SI, SI- X S2, Rp2 X SI or
KS.

Proof. By the slice theorem, and by using an automorphism of T2,
we can see that M* must be one of the following four orbit spaces which
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are the intervals with "weights".

183

(i)
1

(0,1)

(ii)
<-1 xl> 1

(0,1)

(iii)
<-1 x-I> I

<-IXI>
(iv)

<-1 xl> 1

<-1 xl>

<-1 x-I>

where, on the interior of the intervals, the stabilizer is trivial and at the
end points the stabilizer is a circle subgroup or, a Z2. By applying the
same method in [K], we can show that there exist a cross section x such
that 1r 0 x = id. So, by the cross section theorem (see [Kj), we have only
to construct spaces with T2-actions whose orbit spaces are as above.

(i) T 2 x Rp2 X SI ~ Rp2 X SI

(exp 21rW, exp 21rZ,B) x ([p exp 21r8, z], exp 21rz4»

~ ([pexp 21rz(8 + a), z], exp 21rz(8 + (3»
(ii) T 2 x SI- X S2 ~ SI- X S2

(exp 21rw, exp 21rz,8) x [exp21rz4>, (pexp21rz8, z)]

~ [exp 21rz( 4> + ,8), (p exp 2(8 +Q'), z)]

(iii) T 2 x SI- X SI X SI ~ SI- SI X SI

(exp 21rW, exp 21rz,B) x [x, y, w]
~ [x exp 21rZQ', y, w exp 21rz,B]

Recall that K is S1- X SI where every point (x, y) in SI x SI is identified
with (-x, y), x,y are complex numbers and y is the conjugate of y.

(iv) T 2 x (SI X SI x SI)! ~~ (sI x SI x SI)! ~

(exp21rZQ', exp 21rz,8) x [x,y,w]

~ [x exp 2n-w, yexp 21rz,8, w]

Here ~ means every point (x, y, w) in SI x SI X sI is identified with
(-x, y, w), (-x, -y, -w) and (x, -y, -w).

To finish the proof, it remains to show that (SI x SI x SI)! ~ is KS.
To show this, we are going to give SI-action on the space above and
obtain a orbit space. Then, by this orbit space and results in [OR], we
can see that KS is (SI X SI x SI)/~.
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To give a 5 1-action, we need the following identification:

t/J : (51 x 51 X 51)/ ~ -+ (51 X 51 X 5 1)/ '"

[x,y,w] -+ [x, y2, yw]

Here, '" mean every point (x,u,w) in 51 x 51 X 51) is identified with
(x, y, yw).

Then we can give a 5 1-action naturally by the complex multiplication
on the first coordinate of (51 xS l xS l )/ "'. The orbit space is the Mobius
strip with Z2 stabilizer on the boundary. By [OR](see Theorem 5), we
can conclude that (51 x 51 x 5 1)/ '" is KS. This completes the proof.

REMARK. By the homotopy exact sequence, 1l"1(SI'" x 52) = Z. We
see that the four spaces above are topologically different, since they have
different fundamental groups (see [N)).

Before we go to the general case, we need the following:
Any circle subgroup of Tn can be expressed as

{(xal,xa2, ... xan) I x E 51}

where the a~s are relatively prime. We denote the circle subgroup by
(a}, a2'" , an). The follwoing lemma supposes to be well-known.

LEMMA 2.3. Given a vector A = (aI,a2'" ,an) is zn such that the
a~s are relatively prime, then we can choose

{(blj,~j'" ,bnj)=Bjlj=1,2,'" ,n-1}

so that A,Bl ,B2,··· ,Bn- l consist ofa basis ofZn, where zn is the n
times direct sum of Z.

REMARK. Given a following orbit space

l
<a1 ,a2 , ...an )

Z2

by lemma 2.3 above, we may assume

1

(1,0,'" )

1:2

where Z2 is generated by -1 x 1 x . .. x 1 or 1 x -1 x 1 x ... x 1.

Now we are ready to prove the theorem.
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THEOREM 2.4. Suppose that M is a closed non-orientable (n + 1)­
dimensional differential manifold with an effective Tn-action. Then M
is diffeomorphic to Rp2 X T n- 1 ,K x T n- 2 ,Sl- x S2 X T n- 2 or KS x
T n -

2 ,n 2: 3.

Proof. By the slice theorem, lemma 2.3, and remark above, we have
following four orbit spaces:

1

(1'0"",0) 1(1'0""'0) 1<-lX1X ... X1> 1<-lX1X ... X1>
(i) (ii) (iii) (iv)

<-lx1 x···x1> <1 X-I x···x1> <-1 xl x· .. x1> <1 x-1x· .. x1>

Then, as in the lemma 2.2, we can give Tn-actions on the four spaces
whose orbit spaces are exactly same as above. This completes the proof.
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