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COMPARISON THEOREMS FOR TUBE VOLUMES
IN PRODUCT RIEMANNIAN MANIFOLDS

SUNG PYyo HONG AND SUNGYUN LEE

1. Introduction

Let P C M be an embedding of a compact p-dimensional manifold P
to an m-dimensional Riemannian manifold M. We denote by VH(r) the
m-dimensional volume of a solid tube of radius r about P and by A¥(r)
the (m — 1)-dimensional volume of its boundary. Throughout this paper
we assume that r > 0 is less than or equal to the distance from P to its
nearest focal point. Then we have

(1) / " AM(rydr = VM(r).

The well-known Weyl’s tube formula for P C R™ can be written as (see
for example [2])

/2 (m-p)/2g, (RP
9 AR™ _ & 2c(R7) m—p+2c—1,
(2) P (r) ; 2c-1T((m — p)/2 + ©)

where ky(R") are Weyl’s curvature invariants constructed from the Rie-
mannian curvature tensor RY of P. Specifically for an even integer e
satisfying 0 < e < p, k.(RP) is defined by

k(R) = [ L(R")aP,

where dP is the volume element of P and I.(RF) is given by
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where § (g) is equal to 1 or —1 according as a3, ..., a. are distinct and
an even or odd permutation of 8, ..., B.; and otherwise is equal to zero.
The summation is taken over all @ and 8 running from 1 to p. The tube
formula for P C E™(K), where E™(K) is m-dimensional non-Euclidean
space of constant curvature K, can be written as ([2])

2 m
PO Sl )
d 2°710((m — p)/2 + )

(3) = m—p+2c+1
sinVEr\" p2e
( TR ) (cos VKr)P—2,

Here k2(RP — RF"(K)) are the same expression as ky.(RP) except that
R? is replaced by RF — RE™(K),

Let PC M and Q C N be two embeddings, and P x Q C M x N be
the corresponding embedding of the product. Then we have the product
formula ([3])

x/2
(4) Ay;év(r) =r / AM(rcos G)Ag(r sin 9) dd.
0

In this paper we derive comparison theorems for A?,‘:QN (r) and VII,"{(’&N (r)-
First we need the following definitions.

For a compact Riemannian manifold P we define formally A%m (r) and
Ag (K)(r) by (2) and (3) respectively. If P C M, we define formally
R™ A¥(r) and F"(EIAM (1) by

(/2] _(m—-p)/2 P_ pM
R™ sM/ N\ _ Z " k(R — R™) m—p+2c—1
(5) AP (7') - 2c_11-1((m — p)/2 + C) r ’

c=0
2
00 43 () = 3 TP B~ B
g 25T ((m ~ p)/2 + )

(6) o= 0 VE m—p+2c—1
( Ni7e ) (cos VKr)?P~2°,
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Here ko (RP — RM) are the same expressions as ko( RF) except that R
is replaced by R¥ — RM. We also define VR (r), Vlf (K)(r), RV M(r),

m . . m E™ m m
E™(KIVM(r) by integraing AR”(r), Ap ' (r), R"A¥(r), T 4Y¥(r)
from 0 to r. These definitions are intrinsic to P C M and appear in
Gray’s comparison theorems [1].

Similarly, if P ¢ M and Q C N, we define formally A%:c’;R"(r),

R™ xE" (K E™(Ky)xE"(K m (R® ——

Apg” Fr), Ap g TR (r), BT AL (), BT AR (),

xQ
7m0 41058 ) by

AFLGT ()
(") /2 m "
= r/ AR (r cosG)Ag“ (rsin8)dé,
0
R™xE™(K
458" )
(8) o n
—r / AR (rcos 0)AZ )+ sin 0) b,
0
Alfi':(QKOXE"(Kz)(r)
(9) /2 m n
= r/ AIE, (Kl)(TCOSO)Ag (K"’)(rsine) de,
0
B4R ()
(10) . ]
= r/ R™” AM(r cos )} Ag(rsinﬂ) de,
0
Rme"(K)A}A;fXXQIV(T)
:r/ R™ AM (1 cos6)F (K)Ag(rsinﬂ)de,
0
s gl
(12)

n/2 ~ n
ZTA E™ (K0 AM (1 cos 6)E"(K2) AN (7 sin 6) df.

We also define Vlfl: QXR"(r) and R™ xR" Vlf’i’éN (r) by integrating (7) and
(10) respectively.
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These intrinsic definitions appear in the following product comparison
theorems which generalize Gray’s comparison theorems .

THEOREM 1. Let P C M and Q@ C N be two embeddings, and P x
Q C M x N be the corresponding embedding of the product. Assume
r > 0 is not larger than the distance between P x ) and its nearest focal
point in M x N. Let KM and KV be the sectional curvature of M and
N respectively.

(i) FKM > 0 and KN > 0, then we have
AR () <R AN and V() < FURVRIN ()
(ii) If KM < 0 and KN < 0, then we have
AP () > BRI ANN () and VR (r) > BTRIYMN(r).
THEOREM 2. Assume the hypotheses of Theorem 1.
(i) FKM > 0and KN > K, then
Y (r) < RTXE"O AMXN )
(i) If KM > K,, and KN > K,, then
AR () < EUDXE D) AMN 1)
(iii) KM >0 and KN > K, then
ARG (r) 2 BTXETUO AR (7).

(iv) F KM < K, and K" < K,, then

A ) 2 PB4l ),
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THEOREM 3. Under the hypotheses of Theorem 1 assume dim P =
p<3anddim@Q=q¢<3.
(i) FKM >0and KN >0 then
AR () < BRI ARY () < ARLEY ()
VRS (r) < RTRVER () < VEGT (7).
(i) KM >0 and KN > K then
AP (r) S BTEIO AN () < Apg” CO(r)-
(111) HKM _>_ K] and KN Z K2 then

m i E™(K; E"(K:
Algxxg(r) < E™(K1\)xE (Kz)AII‘)'f:éV(r) < Ang) 1)xE™( 2)(1.)_

(iv) KM <0 and KN <0 then
ARG () > BRI AR (r) > AR (r);
VAN (r) > BRIy MN (r) > VEI B ().
(v) FKM <0and KN < K then

M m n R™xE"(K
AYD () > RTXETE) AMN () > AR 55 O(r)

(vi) f KM < K, and KN < K, then

AYZQ (r) 2 FTUCIETUID AL () 2 AR g0 ()

Theorem 3 has better formulas for some special cases.
THEOREM 4. Under the hyposethes of Theorem 1, let either m = 2,
p=0orm=3,p=1.
(i) K™ >0and KN >0 then AP0 (r) < B AY (r)R" VI (r)
(i) FKM™ >0and KN > K then A}5 (r) < R" AY () EF" OV (r)
(iti) If KM < 0 and KN < 0 then Ayxxév(r) > RTAMR VY (r)
(iv) KM <0and KN < K then AY ) (r) > ™ A¥ (r)E" OV (r).

The product formulas of Lee ([3], p.155 Theorem 4) have the general
versions. We also obtain the corresponding comparison theorems.
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THEOREM 5. Assume the hypotheses of Theorem 1. Let ry < ry and

r=/rT+ 3. Write AR XR" = APID and VE SR = VIS,

(i) Let both p and m + n — ¢q be even. If KM > 0 and KV > 0,
then

Y ise VEUr VG2 (ry)
Y% y2d(p )ATTR—2T2
(13) m+n(r) < 271y Zd_o P ( 1) Q ( 2)

P —
@ e TR, AB(r )V (ry)
—2d
4#3}-11'3 Zﬁil A?a"(rl)A3+" 2 +4(7'2)
and

21 302, VA r) Vgt 202 (r2)
ymtn L T80 VEUr)AG 2 (rs)
(14) PxQ(r) < r oo 2d m+4-n—2d
-;;l- Ed:l AP (TI)VQ (7'2)

~2d+2
Ty Lae1 AF(r) AT T (ry).

(ii) Let both p and m +n — q be even. F KM < 0 and KN < 0,
then inequalities (13) and (14) are reversed.
(iii) Let bothp and m+4n —q be odd. If KM > 0 and K" > 0, then

SR

(5) v < | T e )AGT )
21"-1 Ed— A +l(,r )Vm+ﬂ 2d+1(,’_ )
ek D AR ) AF )

and

2mr 3 og2 VAT (r) VG243 (ry)
16 Amtn ;’; EZ?_-O ng-ivl (TI)A8+n_2d_l(r2)
( ) PXQ(T) < .l'. E;f_ A2d+1( ) m+n—-2d—1(r2)

27.-,-11-2 Ed— A2d+l(7‘ )Am+n—2d+l(r )
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(iv) Let bothp and m+n —gq be odd. If KM < 0 and KN <0, then
inequalities (15) and (16) are reversed.

(v) Letpbe evenandn—gq odd. I KM > 0 and KV > 0, then (13)
and (14) hold either forry < rp orforry =r; withm+n —p—
g—12>0.

(vi) Let p be even and n — q odd. If KM < 0 and K" < 0, then the
reversed inequalities of (13) and (14) hold either for r1 < rp or
forri=r; withm+n—p—q—120.

(vii) Let p be odd and n—gq even. f KM > 0 and KV > 0, then (15)
and (16) hold either for ry < rp orforry =r; withm+n—p—
qg—12>0.

(viii) Let p be odd and n — g be even. If KM < 0 and KN < 0, then
the reversed inequalities of (15) and (16) hold either for r; < rq
orforry=r, withm+n-p—q—12>0.

2. Proofs of Theorems

First we recall Gray’s comparison theorems.

THEOREM 6[1]. Let P C M andr > 0 be not larger than the distance
between P and its nearest focal point.
(i) If KM >0 then A¥(r) < R" AM(r); VM(r) < BT VH(r).
(i) f KM <0 then A¥(r) > B AM(r); VM(r) > BTV (7).
(iii) FKM > K then A¥(r) < E"UOAM (), VM (r) < "BV M(r),
(iv) KM < K then AM(r) > E" B AM(r), VM(r) > E"EOYM(r).

When the dimension of a submanifold P is less than or equal to 3
better comparison theorems are given.

COROLLARY 7[1]. Under the hypotheses of Theorem 6 let p < 3.
(i) ¥ KM > 0, then AY(r) < RTAM(r) < AR"(r); VM(r) <
RV () SVET(r).
(i) If KM < 0, then A¥(r) > ®"A¥(r) 2 AR (r); VH(r) 2
ROV (r) 2 VBT ().
(i) IFKM > K, then A¥(r) < E"E)AM(r) < AE" By, y M(r) <
FrUVH(r) s vie ).
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(iv) FKM < K, then AY(r) > F" 0 AY(r) > AZT )y, vM(r) >
ETOVY(r) 2 vy Fr).

For the proofs we refer to [1].

Proof of Theorem 1. We prove case (i) only. The same argument with
reversed inequalities shows case (ii). It is not difficult to see that if r > 0
satisfies the assumption of Theorem 1 then r > 0 is also not larger than
the distance between P (resp. Q) and its nearest focal point. Since case
(i) of Theorem 6 holds true if we replace inequalities by strict inequalities
we have from (4)

w/2
AN =r /0 AY(r cos8)AN(rsin8) d6

nf2 - n
< r/ R” AM(rcosO)® Ag(rsinﬂ) dé
0

R™xR"™ sMxN
= x AP:Q (r)-
Integrating it with respect to r we obtain Vg;’éN (r) < B"<R" Vg{(’aN (7).

REMARK. In fact

R7R® gM () Y D hao(RY — RY)kn( RS — RT)
X ~ & 20+b-1T(m+n—p—gq)/2+a+b)

rm+n—p—q+2a+2b-—1

Proof of Theorem 2. These are consequences of (4), (8), (9), (10),
(11), (12) and Theorem 6.

Proof of Theorem 3 and 4. These are consequences of Theorem 6,
Corollary 7, Theorem 1 and Theorem 2.

Proof of Theorem 5. These are consequences of the general version of
(3, p.155 Theorem 4], Theorem 1 and Theorem 2.
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