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COMPARISON THEOREMS FOR TUBE VOLUMES

IN PRODUCT RIEMANNIAN MANIFOLDS

SUNG PYO HONG AND SUNGYUN LEE

1. Introduction

Let P C M be an embedding of a compact p-dimensional manifold P
to an m-dimensional Riemannian manifold M. We denote by V/! (r) the
m-dimensional volume of a solid tube of radius r about P and by At!(r)
the (m - 1)-dimensional volume of its boundary. Throughout this paper
we assume that r > 0 is less than or equal to the distance from P to its
nearest focal point. Then we have

(1)

The well-known Weyl's tube formula for PeRm can be written as (see
for example [2])

(2)
[P/2J (m-p)/2k (RP)

AR"" (r) = ""' 1r 2c rm-p+2c-l
P ~ 2c-1r«m - p)/2 + c) ,

where k2c( RP) are Weyl's curvature invariants constructed from the Rie­
mannian curvature tensor RP of P. Specifically for an even integer e
satisfying 0 ::; e ::; p, ke(RP ) is defined by

where dP is the volume element of P and le(RP ) is given by
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where 6{p) is equal to 1 or -1 according as al, ... , a e are distinct and
an even or odd permutation of fJl' ... ,fJe; and otherwise is equal to zero.
The summation is taken over all a and fJ running from 1 to p. The tube
formula for P C Em(K), where Em(K) is m-dimensional non-Euclidean
space of constant curvature K, can be written as ([2])

(3)

Here k2c(R
P - REm(K» are the same expression as k2c(RP) except that

RP is replaced by RP _ REm(K).

Let P C M and Q C N be two embeddings, and P x Q c M x N be
the corresponding embedding of the product. Then we have the product
formula ([3])

[7r/2
(4) AW:~(r) = r 10 At!(rcos9)AZ(rsin9)d8.

In this paper we derive comparison theorems for AW:~(r) and V~"t(r).
First we need the following definitions.

For a compact Riemannian manifold P we define formally A~m (r) and
Em(K)

A p (r) by (2) and (3) respectively. IT P c M, we define formally
R

m At!(r) and Em(K)At!(r) by

(5)

(6)
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Here k2c(R
P - RM ) are the same expressions as k2c(R

P ) except that RP

is replaced by RP _RM. We also define V,m(r), V:m(K)(r), RmV,,¥(r),
Em(K)Vpt(r) by integraing A"m(r), A~m(K)(r),R

m A9!(r), Em(K) A9!(r)
from 0 to r. These definitions are intrinsic to P C M and appear in
Gray's comparison theorems I1J.

Similarly, if P c M and Q c N, we define formally A~:QRn(r),
ARm Xen(K)( ) AEm(KdxEn(K2)( ) RmxRn A MXN( ) RmxEn(K) A MXN( )

PxQ r, PxQ r , PxQ r, PxQ r,
Em(KdxEm(K2 ) A'1xxt (r) by

(7)

(8)

(9)

(10)

(11)

(12)

We also define V:x~XRn(r) and R
m
XRnV:X~(r) by integrating (7) and

(10) respectively.
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These intrinsic definitions appear in the following product comparison
theorems which generalize Gray's comparison theorems .

THEOREM 1. Let P C M and Q C N be two embeddings, and P x
Q c M x N be the corresponding embedding of the product. Assume
r > 0 is not larger than the distance between P x Q and its nearest focal
point in M x N. Let KM and K N be the sectional curvature of M and
N respectively.

(i) IT KM > 0 and KN > 0, then we have

AMXN(r) < R"'xR
n AMXN(r) and VMXN(r) < R"'xRnVMxN(r)PxQ PxQ PxQ PxQ .

(ii) IT KM < 0 and K N < 0, then we have

AMXN(r) > R"'xR
n AMxN(r) and VMXN(r) > R"'XRnVMxN(r)PxQ PxQ PxQ PxQ .

THEOREM 2. Assume the hypotheses of Theorem 1.

(i) IT K M ~ 0 and K N ~ K, then

AMXN(r) < R"'xEn(K)AMXN(r)PxQ - PxQ·

(iii) IT KM ~ 0 and KN ~ K, then
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THEOREM 3. Under the hypotheses of Theorem 1 assume dimP =
p ~ 3 and dimQ = q ~ 3.

(i) H KM > 0 and K N > 0 then

AMXN(r) < Rn> xRft AMXN(r) < ARm XRft(r).
PxQ PxQ PxQ '

VMxN(r) < Rm
XRftVMXN(r) < VRm XRft(r)

PxQ PxQ PxQ .

(ii) H KM ~ 0 and K N ~ K then

A MXN(r) < R m xEft(K)A MXN(r) < ARm XEft(K)(r)
PxQ - PxQ - PxQ .

(iii) H KM ~ Kt and KN ~ K 2 then

AMXN(r) < Em(KdxEft(K2)AMxN(r) < AE"'(Kd xEft (K2)(r)
PxQ - PxQ - PxQ .

(iv) H KM < 0 and KN < 0 then

AMXN(r) > RmxR
ft

AMXN(r) > ARmXRft(r)·
PxQ PxQ PxQ '

VMxN(r) > Rn> xRftVMXN(r) > VRm xRft(r)
PxQ PxQ PxQ .

(v) H K M ~ 0 and K N ~ K then

AMXN(r) > RmxEft(K)AMXN(r) > ARmxEft(K)(r)
PxQ - PxQ - PxQ

(vi) H KM ~ Kt and KN ~ K 2 then

AMXN(r) > E
m

(KdxEft (K2)AMXN(r) > A E
m

(Kd xEft (K2)(r)
PxQ - PxQ - PxQ

Theorem 3 has better formulas for some special cases.

THEOREM 4. Under the hyposethes of Theorem 1, let either m = 2,
p = 0 or m = 3, p = 1.

(i) H KM > 0 and K N > 0 then A'txX~(r) < R
m
A~(r)RftV<f(r)

(ii) H KM ~ 0 and KN ~ K then A't:~(r) ~ R
m
A~(r)Eft(K)V<f(r)

(iii) H KM < 0 and K N < 0 then A'txX~(r) > R
m
A~(r)RftVf(r)

(iv) HKM ~ 0 and K N ~ K then A'txX~(r) ~ R
m
A~(r)Eft(K)Vcf(r).

The product fonnulas of Lee ([3], p.155 Theorem 4) have the general
versions. We also obtain the corresponding comparison theorems.
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THEOREM 5. Assume tbe bypotbeses of Tbeorem 1. Let rl :::; r'}. and
V 2 '}. . RmxR" m+n d RmxR" m+nr = r l + r2' Wnte A pXQ = A pxQ an VpxQ = VpxQ '

(i) Let botb p and m + n - q be even. If KM > 0 and KN > 0,
tben

(13)

(14)

vm+n(r) <PxQ

and

Am+n(r) <PxQ

(15)

(ii) Let both p and m + n - q be even. If KM < 0 and KN < 0,
tben inequalities (13) and (14) are reversed.

(iii) Let both p and m + n - q be odd. IfKM > 0 and K N > 0, then

E~o Vffid+l(rdVQ+n-2d-l(r'}.)

_1_ ~oo V2d+1(r)Am+n-'1.d+l(r )
'1.'l1"r2 LJd=O P 1 Q '}.

'1.:rl E~l A~+l(rdVQ+n-'1.d+l(r2)

1 ~ 00 A'1.d+l (r )Am+n-'1.d+3(r )
4 'lI"2 rl r2 LJd=1 P 1 Q 2

and

(16) Am+n(r) <PxQ
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(iv) Let both p and m +n - q be odd. H KM < 0 and K N < 0, then
inequalities (15) and (16) are reversed.

(v) Let p be even and n-q odd. H KM> 0 and KN > 0, then (13)
and (14) hold either for Tt < T2 or for Tt = T2 with m + n - p­
q -1 2: O.

(vi) Let p be even and n - q odd. H KM < 0 and K N < 0, then the
reversed inequalities of (13) and (14) hold either for Tt < T2 or
for Tt = r2 with m + n - p - q - 1 2: O.

(vii) Let p be odd and n - q even. H KM > 0 and K N > 0, then (15)
and (16) hold either for Tt < T2 or for Tt = T2 with m + n - p­
q - 1 2: O.

(viii) Let p be odd and n - q be even. H KM < 0 and K N < 0, then
the reversed inequalities of (15) and (16) hold either for Tt < r2

or for rt = T2 with m + n - p - q - 1 2: O.

2. Proofs of Theorems

First we recall Gray's comparison theorems.

THEOREM 6[1]. Let P c M and r > 0 be not larger than the distance
between P and its nearest focal point.

(i) If KM 2: 0 then AW(r) ~ R
m

AW(r)j Vf(r) ~ RmVf(r).
(ii) If KM ~ 0 then AW(r) 2: R

m
AW(r)j Vf(r) 2: RmVtt(r).

(iii) HKM 2: K then AW(r) ~ Em(K)AW(r)jV;'(r) ~ Em(K)Vtt(r).
(iv) IfKM ~ K then AW(r) 2: Em(K)AW(r)j Vtt(r) 2: Em(K)Vtt(r).

When the dimension of a submanifold P is less than or equal to 3
better comparison theorems are given.

COROLLARY 7[1]. Under the hypotheses of Theorem 6 let p ~ 3.

(i) If KM 2: 0, then At!(r) ~ R
m

At!(r) ~ A,.m(r)j Vtt(r) <
RmVtt(r) ~ V}}m(r).

(ii) H KM ~ 0, then AW(r) ~ R
m

At!(r) 2: A,.m(r)j V;'(r) 2:
RmVtt(r) 2: VJ-m(r).

(iii) IfKM 2: K, then At!(r) ~ Em(K)At!(r) ~ A~m(K)(r)jVtt(r) ~

Em(K)Vf'(r) :$ V:m(K)(r).
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(iv) H KM ~ K, then At!(r) ~ Em(K)At!(r) ~ A~mp"(\r);Vr(r) ~

Em(K)Vpt(r) ~ V:m(K)(r).

For the proofs we refer to [1].

Proof of Theorem 1. We prove case (i) only. The same argument with
reversed inequalities shows case (ii). It is not difficult to see that if r > 0
satisfies the assumption of Theorem 1 then r > 0 is also not larger than
the distance between P (resp. Q) and its nearest focal point. Since case
(i) of Theorem 6 holds true if we replace inequalities by strict inequalities
we have from (4)

Integrating it with respect to r we obtain Vfx~(r)< RmxRnvfxQN(r).

REMARK. In fact

R m xRn A MxN r _ ~~ 1r(m+n-p-q)/2k2a(RP - R M )k2b(RQ - RN)

PxQ ( ) - L.: L.: 2a+b-1r«m + n - p - q)j2 + a + b)

rm+n-p-q+2a+2b-l.

Proof of Theorem 2. These are consequences of (4), (8), (9), (10),
(11), (12) and Theorem 6.

Proof of Theorem 9 and 4. These are consequences of Theorem 6,
Corollary 7, Theorem 1 and Theorem 2.

Proof of Theorem 5. These are consequences of the general version of
[3, p.155 Theorem 4], Theorem 1 and Theorem 2.
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