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AFFINELY FLAT 2-TORI WITH

IDENTICAL HOLONOMY

HYUK KIM

o. Iutroduction

The study of affine structures on the 2-dimensional torus T 2 was sug­
gested by C. Ehresmann and S. S. Chern, and then has been signifi­
cantly investigated by many anthors, notably by N. Kuiper [Ku] and T.
Nagano and K. Vagi [NY]. But the complete description of the moduli
space doesn't seem to be appeared yet.

It is known that the developing maps of affine structures on T 2 are all
coverings and there are essentially four different types of developments
[NY]. Among these, three convex cases are studied in [Ku], and the
remaining non-convex case will be investigated in this paper following
the line set up in [Ki]. We are basically looking into the moduli space
of linearly flat structures of T 2 with non-trivial covering developments,
which is sitting inside the moduli space of affinely fiat structures of T 2 .

We will confine ourselves in this paper to computing and describing the
complications arising in the study of the moduli space of the complex
linear structures and we defer the study of the moduli space of affine T 2

as a global singular topological object to a subsequent paper.
"Ve study the deformation space or the moduli space on T 2 in terms

of holonomy representations, and especially focus on those structures
which have the equivalent holonomy representations under the various
level of equivalences. This many to one correspondence between the
affine structures and the holonomy representations occurs only for the
affine structures whose developing maps are non-trivial coverings, and
thereby making these affine structures the more interesting part of the
moduli space of all affine (or projective) structures on T 2

• Since T 2

is the simplest non-trivial affine manifold in a sense, this phenominon
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arising in the study of the moduli space on T2 should persist through the
studies of the moduli space of non-convex affine or projective structures
on more general manifolds.

1. The space of affine structures and holonomy representa­
tion

An affinely fiat (or affine in short) structure on a smooth mani­
fold M is a maximal atlas {(Ua,epa)}, where epa : Ua -t En is a
smooth coordinate chart into the Euc1idean n-space, such that epaoep-pl :
epp(Ua n Up) -t epa(Ua n Up) is a restriction of an affine transforma­
tion on En. A linearly fiat structure is defined similarly replacing affine
transformation in the above definition by linear transformation and En
by En - {O}. Both of these are special cases of (X, A)-structures with
(X, A) = (En, Aff(n, R)) and (X, A) = (En - {O}, GI(n, R)). (See [Ny),
[KI], [Th], [Ki] for A-structures.)

If we fix a universal covering p : !VI -t M with the pull back (X, A)­
structure, then the space of (X, A)-structures whose developing maps
are coverings can be parametrized as follows. Let D : !VI -t X be a fixed
developing map which is also a covering, and let AD be the group of
A-diffeomorphisms (namely, affine or linear diffeomorphisms depending
on the context) on !VI so that we have a short exact sequence of Lie
groups,

(1.1)
i p

1 -t .6. ~ AD ~ A -t 1,

where p(a) E A for a E AD is the unique affine (or linear) transformation
such that D 0 a = p(a) 0 D, and .6. = ker p is the deck transformation
group of the covering D : !VI -t X. Then any other covering (X, A)­
structure will give a developing map D' : M -t X and D' = D 0 f
for some lifting f E Diffeo(M) of idx such that the following diagram
commutes.

M f IM

D'l lD
X

idx
XI

=
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Since f is an A-diffeomorphism and the structure on M is the pull-back
structure, cJ(r) = frf-l E AD for r E IT, the deck transformation
group for p : M -. M, i.e., f E :FD = {f E Diffeo(M) IcJ(IT) CAD}.
Conversely for any f E :FD, D 0 f defines an A-structure on M, where
IT acts as A-diffeomorphisms, and thus defines an A-structure on M. IT
we parametrize (X, A)-structure on M by f E :FD denoting it as (M, f),
then it is easy to show that id: (M,f) -. (M,g) is an A-diffeomorphism
iff there is a E AD such that 9 = a 0 f, and that (M,f) and (M,g)
are A-diffeomorphic iff there exist a E AD and h E N(IT) such that
go h = a 0 f, where N(IT) = the normalizer of IT in Diffeo(M). (See [Ki,
proposition 2.1].) This suggests us to define a left (resp. right) action
of AD (resp. N(IT)) as the composition on the left (resp. right), and
AD\:FD/N(IT) is called the moduli space of covering A-structure on M.
For a given f E :FD, the composition pOCJ : IT -. A is called the holonomy
representation of (M,f) and defines a map 1/J ::FD -. Hom(IT, A) with
1/J(f) = po Cf·

IT we let Z(IT) be the centralizer of IT in Diffeo(M), it is easy to
check C : :FD -. Hom(IT, AD) given by c(f) = Cf induces a injective
map: :FD/Z(IT) -. Hom(IT, AD), also denoted by c. The quotient space
AD\:FD / Z (IT) is called the deformation space of covering A-structures on
M, and c induces an injective map AD\:FD/Z(IT) -. AD\Hom(IT, AD)
and hence an injective map AD\:FD/N(IT) -. AD\Hom(II, AD)/Aut(IT),
where AD action on Hom(IT, AD) is by conjugation. (See [Ki] for the
details.)

For our case when M = T2, we will fix and use the standard universal
covering, p : M = R2 -. M = SI X SI C c 2 given by p(x,y) =
(e2lrix , e2lriy ). Throughout the paper we will identify M = R 2 with
c. We want to study the non-convex affine structures on T 2 • As is well
known [NY], such affine structure has a non-trivial covering development
: M -. E 2 - {point}, and may assume that the. developing image is
X = E2 - {O} by composing with a suitable translation. Hence these
are linearly fiat structures. Now we will fix a covering development
D : M = C -. X = C* = C - {O} given by (the exponential map,
w = eZ = D(z). This D certainly defines an affine (or linear) structure
on T2 since II acts on M = C as affine transformations. Indeed, if
rl : z 1--+ z + 1 and r2 : z 1--+ z + i are the standard generators of IT,
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then p(1"I) : w 1---+ ew and p(1"2) : w 1---+ eiw are affine (in fact, linear)
transformations on E 2 • If we let A = GI(2,R), then AD, the group of
A-diffeomorphisms on M = R 2 becomes Gl(2, R), the universal covering
group of Gl(2, R). Note that Gl(2, R) has two components since Gl(2, R)
does. And the deck transformation group ~ for D : z 1---+ e% = w is an
infinite cyclic group generated by 8 : z 1---+ z + 27l"i.

2. Complex linear structures on T 2

Among the linearly flat structures on T 2 = M the complex linear
structures constitutes the major portion [NY] and we concentrate to
understand the moduli space of these structures. The fixed developing
map D : M = C --+ C* given by D(z) = e% = w defines a complex linear
structure «C*, Gl(l, C))-structure or C*-structure in short) on the torus
with holonomy representation p given at the end of the previous section.
Now all the other complex linear structures can be easily described as
follows. Since a translation 9a : z 1---+ z + a on M= C induces a complex
multiplication mo: '--W 1---+ a . w, a = ea via D, if we let G D be the
sugbroup of AD = Gl(2,R) consisting of translations, then GD can be
identified with C by identifying 9a with a and p(GD ) C A = GI(2,R)
with C* by identifying mo: with a. Hence the restriction of (1.1) on GD
becomes

1 ~
i

AD
p

A 1--+ --+ --+ --+

11 u U
(2.1) 1 ~

i
GD

P G 1--+ --+ --+ --+

III
i 11 exp 11

1 --+ 27l"iZ --+ C --+ C* --+ 1

This immediately induces the "short exact sequence" of representation
varieties,
(2.2)

i. P.1 --+ Hom(II,~) --+ Hom(II,GD) --+ Hom(II, G) --+ 1
III III

expxexp
III

1 --+ ~x~ --+ CxC --+ C* x C* --+ 1.

Since a linear transformation 9 E Gl(2,R) on M = R 2 gives rise to a
conjugation cg : II --+ GDeAD, Gl(2, R) C :FD. Furthermore Gl(2, R)
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sits in F D/Z(IT) injectively since Gl(2, R) n Z(IT) = 1. Thus we obtain
a diagram of injective maps:

c
Gl(2,R)

1-1
I Hom(IT, GD)

(2.3) 1-11 11-1
c

I Hom(IT, AD)'FD/Z(IT)
1-1

In fact, if we identify Hom(IT, G D) ~ c x C ~ RZ X R 2 with gl(2, R)
by writing a pair of vectors in RZ as two column vectors of a 2 x 2
matrix, then c: Gl(2,R) ~ Hom(IT,GD) ~ gl(2,R) simply becomes an
inclusion map. This also shows that

(2.4) c(GI(2, R)) = c(FD/Z(IT)) n Hom(IT, GD)'

Now (2.3) gives us a way of parametrizing the deformation space of
complex linear structures as the following induced diagram shows.

C

I Zz\Hom(II,GD)
p.

I Zz \Hom(IT, G)Zz\GI(2,R)
1-1

(2.5) 1-11 1-11 1-11
AD\FD/Z(IT)

c p.
I AD\Hom(II,AD) I A\Hom(IT,A)

1-1
If a 0 9 E Gl(2, R) for a E AD and 9 E Gl(2, R), then a E AD n Gl(2, R),
and hence the injectivity of the first column map of (2.5) follows from
the lemma below.

LEMMA 2.1. ADn Gl(2,R)= {l,o-}, whereo-= (~ ~l).

Proof. Observe that D = exp : M = C ~ X = C· sends a line
through the origin to an infinite curved spiral except two cases: D (x­
axis) = positive x-axis in C· and D (y-axis) = unit circle in C·. Since
an element in AD induces a linear map in X via D, both x-axis and
y-axis should be preserved by an element of AD n GI(2, R). Moreover
by looking at the equation, the only possible such maps are 1 and eT.
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The Z2 = {l, (7} action on GI(2, R) and on Hom(II, GD) (or on

Hom(II, G)) are given by complex conjugations, i.e., (7. 9 = (~ ~l)· 9

for 9 E GI(2,R) and (7.4> = (j) for 4> E Hom(II,GD) (or Hom(II,G)),
where 4>(T) = 4>(T) in the identification GD= C (or G = C*). Note also
that (7 . 4> = (j) = Cu 0 4>. Then it is obvious that these two Z2 actions
are equivariant via c, and the injectivity of the map c in the first row of
(2.5) follows.

Finally let's show the injectivity of second and third column map of
(2.5).

LEMMA 2.2. Let Z be tbecenterofA = Gl(2,R) andA+ = Gl+(2,R).

(i) ,E G - Z =:::} {o: E A+ 10:,0:-1 E G} = G
(ii) 9 E GD - p-l(Z) =:::} {a EAt laga-1 E GD} = GD.

Proof. If, E G - Z, then, is of the form (: ~q) with q# o.
Now it can be easily shown by direct computation that if 0:,0:-1 E G
then 0: E G or aG. Since a E A+, 0: E G. Conversely, if 0: E G,
then 0:,0:-1 = , since G is abelian. (ii) follows from (i) by applying
p: AD -+ A.

LEMMA 2.3. (i) For 0: E A+ and, E G, 0:,0:-1 E G => a,o:-1 = ,.
(ii) For a E At and 9 E GD, aga-1 E G D => aga-1 = g.

Proof. By Lemma 2.2, if, E G - Z, then 0:,0:-1 E G implies 0: E G
and hence 0:,0:-1 = , since G is abelian. If, E Z C G, then clearly
a,o:-1 = ,. Similarly (ii) follows from Lemma 2.2. Note that p-l(Z) is
the center of Ab since the translations by real numbers form an identity
component ZO(AD) of the center of Ab (hence of AD) and p-l(Z) =
~. ZO(AD).

The above lemma shows that A+ .,nG = {,} (A+ . r is the A+-orbit
of, with conjugation action, a·, = a,a-1 ) and Ab· 9 n GD = {g}.

LEMMA 2.4. (i) For 4> E Hom(II, G) and a E A+, Ca 04> E Hom(II, G)
=> Ca 0 4> = 4>.
(ii) For 4> E Hom(II, GD) and a EAt, Ca 04> E Hom(II, GD) => Ca 04> = 4>.
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Proof. If Ca 0 </> E Hom(II,G) for a E A+, then a</>(T)a- l E G for
all TEll and hence a</>(T)a-1 = </>(T) by Lemma 2.3. The proof of (ii)
follows similarly.

REMARK 2.5. This lemma shows that A+ . </> n Hom(II, G) = {</>} for
</> E Hom(II, G), where A+ action is given by a· </> = Ca 0 </>, and similarly
At· </> n Hom(II,GD) = {</>} for </> E Hom(II,GD). Since A- == uA+,
A-. </> = uA+·</> and hence A - .</>nHom(II, G) = {~} for </> E Hom(II, G).
Similarly, A - . </> n Hom(II, GD) = {qJ} for </> E Hom(II, GD).

REMARK 2.6. It is clear from Lemma 2.2 that the isotropy group
of A + action at </> E Hom(II, G) is given by G if </> fj. Hom(II, Z) C
Hom(II, G) and by A+ if </> E Hom(II, Z). Similarly, for the isotropy
group of A+ action at </> E Hom(II,GD), simply replace Z by Z(At) =
p-l(Z) = ~. ZO(AD) and G by GD in the above.

Now the injeetivity of second and third column map of (2.5) follows
from RemarK 2.5.

The map p. : Hom(II, GD) -+ Hom(II, G) is a (product) covering
map from (2.2). (See [Ki] for general statement.) But the induced map
(also denoted by) p. : Z2\Hom(II, G D) -+ Z2 \Hom(II, G) is an orb­
ifold covering. By (2.4), we see that Z2 \GI(2, R) (or C(Z2 \GI(2, R))
which is an open dense subset of Z2 \Hom(II, GD) faithfully parametrize
the deformation space of complex linear structures on T 2

, and the ele­
ments P.C(Z2 \GI(2, R)) C Z2\Hom(II, G) are their holonomy represen­
tations. Note that p.c(GI(2, R)) corresponds exactly to the complement
of SI x SI C C· x C· when we identify Hom(II, G) with C· x C·,
and this in turn implies that p.c(GI(2,R)) = Hom(II,G)-Hom(n,SI),
where SI c C· = G is the rotation subgroup of G. Therefore for
each holonomy representation there corresponds infinitely many affine
structures (in fact, all complex linear structures) as elements of the de­
formation space of linearly flat structures. The following picture shows
the developing image of the fundamental domain of three different affine
structures of T 2 with identical holonomy representation </> = (ea, eh) E
C· x C· = Hom(n, G).
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a+b+21ti
I
I
I
I

I
I w=&' )
I
I

a+b

Fig. 1

It shows only three points (a, b), (a+21ri,b) and (a,b+21ri) E C x C
that correspond to 4> = (ea,e b) by p. (= exp x exp), but it already sug­
gests fairly well how all the other possible affine structures parametrized
by (a + 21rmi, b+ 21rni) look like.

Hom(II, G)Hom(IT,GD)
c

1-1

REM ARK 2.7. If we work in the category of oriented affine manifolds
(A+-manifolds), then obviously (2.5) becomes a simpler diagram,
(2.6)

GI(2,R)

1-11 1-11
c

A:b\.1"1;jZ(IT) ----+. Ab\Hom(IT,A:b)1-1

where .1"1; = {f E Diffeo(M) ICl: II --+ Ab}·
In this case P* : Hom(II, GD) --+ Hom(IT, G) is a genuine covering

given by (2.2).

Now we summarize the discussions in this section as follows.

THEOREM 2.8. (a) The deformation spaceofC*-structures (i.e., com­
plex linear structures - here we identify G with C*) on T2 is embedded in
the deformation space of Gl+(2, R)-structures on T 2 and parametrized
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by the space 7 = {(al,a2) E C* x C*laI/a2 rt. R} c C x C e::
Hom(II, Go). (7 e:: Gl(2, R).)

(b) Z2 \ 7 parametrizes the C* -structures in the deformation space
of Gl(2, R)-structures (i.e., afEnely equivalent C* -structures up to dif­
feomorphisms homotopic to the identity), where Z2 action on 7 is the
complex conjugation.

(c) A holonomy representation of a C* -structure lies in Hom(II, C*)­
Hom(II, SI), SI C C*. H 4> = (0'1,0'2) = (e a1 ,aa2 ) E C* x C* e::
Hom(II, C*) is not in Hom(II, SI), then 4> is a holonomy representation
of the C* -structures given by {(aI, a2) + 21ri( rn, n) I(rn, n) E Z x Z} n T.

3. Moduli space of complex linear structures

We start with the diagram,

c p.
Gl(2, R) ) Hom(II, GD) I Hom(II, G)

1-1

(3.1) 1-11 1-11 1-11

c p.
FD/Z(II) ) Hom(II, AD) I Hom(II, A)

1-1

From this, the following diagram is naturally induced.

(3.2)
c h

Gl(2,R)/Gl(2, Z) ----+ Hom(ll,GD)/Aut(II) - Hom(II, G)/Aut(ll)

1-11 1-11 1-11
c p.

:FD/N(ll) --+ Hom(ll,AD)/Aut(ll) ----+ Hom(II,A)/Aut(ll)

Here all the actions are composition on the right. Let's again iden­
tify Hom(II, GD) with C x C and Hom(II, G) with C* x C* to carry
out the actual computation of P*. Under these identifications 4> E
Hom(II,GD) corresponds to (al,aZ) E C x C so that 4>(Ti) : Z I--)

Z + ai, and Aut(II) acts as the usual matrix multiplication on the right,
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i.e., if 'Y = (~ ~) E Aut(II) = GI(2, Z), then 4> 0 'Y corresponds to

(at,a2) (~ ~). Similarly, 4> E Hom(II,G) corresponds to (0t,02) E

C* x C* so that 4>(Ti) : Z ~ 0iZ, and Aut(II) acts as the matrix multi­
plication if we use additive notation for C*. Since P* : Hom(II, GD) -t

Hom(II, G) is an Aut(II)-equivariant covering, we first have to compute
the isotropy group Aut(II).p at each 4> E Hom(II, G) and its action on
the fiber p;I(4)).

Let 4> = (01l02) E C* x C* = Hom(II,G) and 9 = (~ ~) E

GI(2, Z) = Aut(II). Write 9 = I + (~' ;, ), p' = p - 1 and s' = s - 1.

Then

(Ot, (2) . 9 = (Ot, (2) {::::::} (01, (2) (~ ;, ) = 0

{::::::} det (p' q) = 0
r s'

{::::::}(p', r) = m(k, I) and (q, s') = n(k, I) for some m, n E Z, and

relatively prime (k, I) E Z x Z. (Note that 01 k + 021 = 0

in additive notation)

{::::::}(~ :,)=(7)(m,n)

( 1+km kn) (k){::::::}g = Im 1 + In = I + I (m, n)

Now note that ±1 = det 9 = km + In +1, and hence km + In = 0 or -2.
Case 1: km + In = O. In this case, (m,n) = t(-I,k), t E Z since

(k, I) are relatively prime, and hence 9 = I + t(~)(-I, k).
Case 2: km + In = -2. Since (k, I) are relatively prime, there exists

a pair ofintegers (u,v) such that ku+lv = 1. Then (m,n) = -2(u,v)+
t(-I,k), t E Z and hence 9 = I - 2(~)(u,v) + t(~)(-I,k). Let's denote
9t = I + t(~)(-I,k) and h = I - 2(~)(u,v). Then the isotropy group
Aut(II).p is generated by (h,9t) and is isomorphic to the unique non-
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trivial extension of Z by Zz. Note that hZ = I and any element of
Aut(II)q. can be represented as gt or hgt .

Now let's examine the action of Aut(II)q. on the fiber p-;I(4)). Choose
any (all az) E p;l( 4» with alk + azl = 0 (so that al = e a1 and az = ea~

and then ata~ = 1). Then all the other elements can be written as
(al,az)+21ri(m,n), (m,n) E ZZ, and hence

«a},az) + 21ri(m,n))' 9 = «al,aZ) + 21ri(m,n))(I + (~)(m"n'))

= (allaZ) + 21ri(m,n). 9

This means that if we identify (allaz)+21ri(m,n) E p-;I(4)) with (m,n) E
Z2, then 9 E Aut(II)q. C GI(2, Z) acts on the right on ZZ as a matrix
multiplication. Note that (aI, az) E C x C with a1k + azl = 0 can be
written as (allaz) = a(-I,k), a E C and the corresponding (allaz) =
(e a1 ,ea2

) = (a-l,a k ), a = ea E C*. That is Aut(II)q. is the isotropy
subgroup GI(2, Z)(-l,k) of GI(2, Z) which fixes (-I, k) E ZZ. Furthermore
the lattice generated by (allaZ) = a(-I,k) is an infinite cyclic group
generated by a (i.e., isomorphic to Z) and hence such 4> E Hom(II, GD)
(or Hom(II, G)) is not injective. If 4> E Hom(II, GD) comes from an
affine structure, it must be injective. However tP E Hom(II, G) with
tP(Il) = (a-I, a k) ~ Z can be the holonomy group of complex linear
structures determined by a(-I, k) + 27ri(m, n) E C x C = Hom(II, G) for
any (m, n) which is not a multiple of (-I, k). See Figure 2 to see what
happens geometrically in this case.

a+b+21ti

\

~,
'_.

Fig. 2
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If we consider the category of oriented affine manifolds, from (2.6) we
have the following diagram.

(3.3)

1-11 1-11
-.:- Ab\Hom(ll,Ab)/Aut(ll) -!:..- A+\Hom(ll,A+)/Aut(ll)1-1

Gl(2, R)/Gl(2, Z) -.:-1-1
1-11

Ab\Fb/N(IT)

Hom(IT, GD)/Aut(ll)
p.- Hom(ll, G)/Aut(ll)

Hence Hom(II, G D)/ Aut(ll) is sitting inside the moduli space of A+­
structures on T2 injeetively.

Summarizing the discussions so far, we have the following proposition.
(In the proposition, we use (p, q) instead of (-1, k).)

PROPOSITION 3.1. (a) Let S = {4> E Hom(II, G) 14> is not injective}.
Then S can be written, with the identification Hom(II, G) = C* x C*,
as S = {(aP,a q

) E C* x C· \p,q: relatively prime integers}.
(b) A ut(II) acts freely on Hom(II, G) - S. For 4> = (aP , a q

) E S, with
respect to the identifica.tion Aut(II) = Gl(2, Z), the isotropy group is

Aut(II)4> = {I -2(!p)(U, v) +t(!p)(p, q),I+t(!p)(p, q) It E Z, I: :I=

1}, and Aut(II)4> is same as Gl(2, Z)(p,q), the isotropy group at (p, q) in
the usual right action of Gl(2, Z) on Z2.

(c) Aut(II)4> action on thefiber p;l(4)) = {a(p, q)+27ri(m, n) I(m, n) E
Z2} C C X C = Hom(II, G D) is given by (a(p, q) + 27ri(m, n)) . 9 =
a(p,q) + 27ri(m,n)· g, 9 E Aut(II)4> = Gl(2,Z)(p,q).

REMARK 3.2. This proposition says that for a subgroup r c G = C*
not in SI, if r ~ Z2, then r is the holonomy group of Z2-many C*­
structures inequivalent as A+-structures up to diffeomorphisms on T2,
and these structures are given by lattices in C, L(a,6) = {ka + Ib Ik, I E
Z}, where (a, b) = (al, a2)+211"i(m, n), for (m, n) E Z2 which corresponds
to r = (eat, ea:!) under the exponential map. But if r = (ea) '" Z, then
(aI,a2) = a(p,q) and some of the lattices £(a,6) are identical by the rule
given in (c).
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IT we consider C*-structures in the moduli space of A = GI(2,R)­
structures, there is one more complication added by the complex conju­
gation. The diagram (2.5) or (3.3) induces the diagram of moduli spaces

(3.4)

P.
- Z2\Hom(ll,G)/Aut(ll)

1-11
A\Hom(ll, A)/Aut(ll)

e
Z2\GI(2,R)/GI(2,Z) - Z2\Hom(ll,Go)/Aut(ll)1-1

1-11 1-11
e ~

AD\:Fo/N(ll) - AD\Hom(ll,Ao)/Aut(ll) _. 1-1

It is easy to show by a similar calculation we have done before that
4J E Hom(II, GD) and its complex conjugation <i> are Aut(II)-equivalent
(Le., gives the same lattice) only when 4J(II) lies in R or iR cC = GD •

Therefore, on the space of representations arising from the C*-structures,
the two actions do not cross each other. Also note that any two GI(2, R)­
equivalent C*-structures are necessarily affine-equivalent since the affine
equivalence on E 2 in this case has to fix the origin.

Now the following theorem readily follows.

THEOREM 3.3. (a) The affine equivalence classes ofC*-structures on
T2 are parametrized by a connected 4-manifold Z2 \ Gl(2, R)/Gl(2, Z)
(- Z2 \7/Gl(2, Z) using the notation of Theorem 2.8).

(b) Any free abelian subgroup r of rank 2 or 1 in C* = G except
rotations (i.e., a subgroup of SI c C*) can be realized as a holonomy
group of a C* -structure on T2, and r and its complex conjugation f' are
the holonomy groups of the affinely equivalent C*-structures.

(c) Those C*-structures (up to affine or Gl(2,R)-equivalences) giving
the same holonomy group are infinite and can be explicitly enumerated
from proposition 3.1 (or Remark 3.2) up to complex conjugation.
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