COMPACT CONTACT CR-SUBMANIFOLDS

 WITH PARALLEL MEAN CURVATURE

 WITH PARALLEL MEAN CURVATURE VECTOR OF A SASAKIAN SPACE FORM*

Jae-Bok Jun, Masumi Kameda and U-Hang Ki

Introduction

The theory of a CR-submanifold of a Sasakian manifold was investigated from two different points of view, namely, one is the case where CR-submanifolds are tangent to the structure vector field, and the other is the case where those are normal to the structure vector field (cf. [11], [12],[13]).

Many subjects for CR-submanifolds in a Sasakian manifold have been studied in [2],[3],[4],[5],[9] and [10] and some interesting results have been obtained. One of which done by Kameda, Ki and Yamaguchi asserts the following :

Theorem A ([3]). Let M be a compact totally real submanifold tangent to the structure vector field in a Sasakian space form. If the mean curvature vector is nontrivial and parallel in the normal bundle, and if the induced f-structure in the normal bundle is parallel, then the shape operator in the direction of the mean curvature vector of M is parallel.

The purpose of the present paper is to investigate compact contact CR-submanifolds in a Sasakian space form, of which the mean curvature vector field is parallel.

In this paper, all manifolds are assumed to be smooth and connected.

[^0]
1. Submanifolds of a Sasakian manifold

Let \tilde{M} be a $(2 m+1)$-dimensional Sasakian manifold covered by a system of coordinate neighborhoods $\left\{\tilde{U}: y^{A}\right\}$ and with structure tensor $\left\{F_{B}{ }^{A}, G_{C B}, V^{A}\right\}$. We then have

$$
\left[\begin{array}{l}
F_{B}^{D} F_{D}^{A}=-\delta_{B}^{A}+V_{B} V^{A}, V_{B} F_{A}^{B}=0, F_{B}^{A} V^{B}=0, \tag{1.1}\\
V^{A} V_{A}=1, G_{B D} F_{C}^{B} F_{A}^{D}=G_{C A}-V_{C} V_{A},
\end{array}\right.
$$

V_{B} being the associated 1-form of V^{A}, where here and in the sequel, the indices A, B, C, \cdots run over the range $\{1, \cdots, 2 m+1\}$. Denoting by ∇_{B} the operator of covariant differentiation with respect to $G_{B A}$, we also have

$$
\begin{equation*}
\nabla_{B} F_{C}^{A}=-G_{C B} V^{A}+\delta_{B}^{A} V_{C}, \nabla_{B} V^{A}=F_{B}{ }^{A} . \tag{1.2}
\end{equation*}
$$

Let M be an ($n+1$)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$ and isometrically immersed in \tilde{M} by the immersion $i: M \longrightarrow \tilde{M}$. When the argument is local, M need not be distinguished from $i(M)$. We represent the immersion i locally by $y^{A}=y^{A}\left(x^{h}\right)$. Throughout this paper, the indices h, j, i, \ldots run over the range $\{1, \cdots, n+1\}$ and we assume that the submanifold M of \tilde{M} is tangent to the structure vector field V^{A}. If we put $B_{j}^{A}=\partial_{j} y^{A}$, $\partial_{j}=\partial / \partial x^{j}$, then $B_{j}=\left(B_{j}^{A}\right)$ are $(n+1)$-linearly independent vectors of M tangent to the submanifold. We choose $2 m-n$ mutually orthogonal unit normals $C_{x}=\left(C_{x}^{A}\right)$ to M. Since the immersion is isometric, we then have

$$
\begin{equation*}
g_{j i}=G_{B A} B_{j}^{B} B_{i}^{A}, g_{x y}=G_{B A} C_{x}^{B} C_{y}^{A}, G_{B A} B_{j}^{B} C_{x}^{A}=0 \tag{1.3}
\end{equation*}
$$

$g_{j i}$ and $g_{x y}$ being the induced metric tensor of M and that of the normal bundle of M respectively, where here and in the sequel the indices x, y, z, u, v, w run over the rang $\{n+2, n+3, \cdots, 2 m+1\}$. Therefore, denoting by ∇_{j} the operator of van der Waerden-Bortolotti covariant differentiation formed with $g_{j i}$, the equations of Gauss and Weingarten for M are respectively obtained:

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{A}=h_{j i}{ }^{x} C_{x}^{A}, \nabla_{j} C_{x}^{A}=-h_{j}^{i x} B_{i}^{A}, \tag{1.4}
\end{equation*}
$$

where $h_{j i}{ }^{x}$ are the second fundamental forms in the direction of C_{x} and
 of B_{j}^{A} and $C_{x}{ }^{A}$ by F are represented in each coordinate neighborhood as follows:

$$
\begin{equation*}
F_{B}^{A} B_{j}^{B}=f_{j}^{i} B_{i}^{A}+J_{j}^{x} C_{x}^{A}, F_{B}^{A} C_{x}^{B}=-J_{x}^{i} B_{i}^{A}+f_{x}^{y} C_{y}^{A} \tag{1.5}
\end{equation*}
$$

where we have put $f_{j i}=G\left(J B_{j}, B_{i}\right), J_{j x}=G\left(J B_{j}, C_{x}\right), J_{x j}=-G\left(J C_{x}\right.$, $\left.B_{j}\right), f_{x y}=G\left(J C_{x}, C_{y}\right), f_{j}^{h}=f_{j i} g^{i h}, J_{j}^{x}=J_{j y} g^{y x}$ and $f_{x}^{y}=f_{x z} g^{z y}$, $g^{y z}$ being the contravariant components of $g_{y z}$. From these definitions we verify that $f_{j i}+f_{i j}=0, J_{j x}=J_{x j}$ and $f_{x y}+f_{y x}=0$. Since the structure vector V^{A} is tangent to M, we can also put

$$
\begin{equation*}
V^{A}=v^{i} B_{i}^{A} \tag{1.6}
\end{equation*}
$$

for a vector field v^{i} on M.
By the properties of the Sasakian structure tensors, it follows, from (1.5) and (1.6) that we have

$$
\begin{gather*}
f_{j}^{t} f_{t}^{i}=-\delta_{j}^{i}+v_{j} v^{i}+J_{j}^{x} J_{x}^{i}, f_{x}^{y} f_{y}^{z}=-\delta_{x}^{z}+J_{x}^{t} J_{t}^{z} \tag{1.7}\\
f_{j}^{t} J_{t}^{x}+J_{j}^{y} f_{y}^{x}=0 \tag{1.8}\\
v^{j} J_{j}^{x}=0, v^{j} f_{j}^{i}=0, v_{j} v^{j}=1 \tag{1.9}
\end{gather*}
$$

Differentiating (1.5) and (1.6) covariantly along M and making use of (1.1), (1.2), (1.4) and these equations, we easily find

$$
\begin{gather*}
\nabla_{j} f_{i}^{h}=\delta_{j}^{h} v_{i}-g_{j i} v^{h}+h_{j}{ }_{x} J_{i}^{x}-h_{j i}^{x} J_{x}^{h} \tag{1.10}\\
\nabla_{j} J_{i}^{x}={h_{j i}}^{y} f_{y}^{x}-{h_{j t}}^{x} f_{i}^{t} \tag{1.11}\\
\nabla_{j} f_{y}^{x}={h_{j t}}^{x} J_{y}^{t}-h_{j t y} J^{t x} \tag{1.12}\\
\nabla_{j} v_{i}=f_{j i} \tag{1.13}\\
h_{j t}^{x} v^{t}=J_{j}^{x} \tag{1.14}
\end{gather*}
$$

In the rest of this section we suppose that the ambient Sasakian manifold \tilde{M} is of constant ϕ-holomorphic sectional curvature c and of real
dimension $2 m+1$, which is called a Sasakian space form, and is denoted by $\tilde{M}^{2 m+1}(c)$. Then the curvature tensor \tilde{R} of $\tilde{M}^{2 m+1}(c)$ is given by

$$
\begin{aligned}
\tilde{R}_{D C B A} & =\frac{1}{4}(c+3)\left(G_{D A} G_{C B}-G_{D B} G_{C A}\right) \\
& +\frac{1}{4}(c-1)\left(V_{C} V_{A} G_{D B}-V_{C} V_{B} G_{D A}+V_{D} V_{B} G_{C A}-V_{D} V_{A} G_{C B}\right. \\
& \left.+F_{D A} F_{C B}-F_{D B} F_{C A}-2 F_{D C} F_{B A}\right)
\end{aligned}
$$

Thus, we see, using (1.3), (1.5) and (1.6), that equations of the Gauss, Codazzi and Ricci for M are respectively obtained:

$$
\begin{align*}
R_{k j i h} & =\frac{1}{4}(c+3)\left(g_{k h} g_{j i}-g_{j k} g_{k i}\right)+h_{k h}^{x} h_{j i x}-h_{j h}^{x} h_{k i x} \\
& +\frac{1}{4}(c-1)\left(v_{k} v_{i} g_{j h}-v_{j} v_{i} g_{k h}+v_{j} v_{h} g_{k i}-v_{k} v_{h} g_{j i}\right. \tag{1.15}\\
& \left.+f_{k h} f_{j i}-f_{j h} f_{k i}-2 f_{k j} f_{i h}\right)
\end{align*}
$$

$$
\begin{equation*}
\nabla_{k} h_{j i}^{x}-\nabla_{j} h_{k i}^{x}=\frac{1}{4}(c-1)\left(J_{k}^{x} f_{j i}-J_{j}^{x} f_{k i}-2 J_{i}^{x} f_{k j}\right) \tag{1.16}
\end{equation*}
$$

$$
\begin{align*}
R_{j i y x} & =\frac{1}{4}(c-1)\left(J_{j x} J_{i y}-J_{i x} J_{j y}-2 f_{j i} f_{y x}\right) \tag{1.17}\\
& +h_{j i x} h_{i y}^{t}-h_{i t x} h_{j y}^{t}
\end{align*}
$$

where $R_{h_{j i h}}$ and $R_{j i y x}$ are the Riemannian curvature tensor of M and that with respect to the connection induced in the normal bundle of M respectively. We see from (1.15) that the Ricci tensor of M can be expressed as follows:

$$
\begin{align*}
R_{j i} & =\frac{1}{4}\{n(c+3)+2(c-1)\} g_{j i}-\frac{1}{4}(c-1)(n+2) v_{j} v_{i} \tag{1.18}\\
& -\frac{3}{4}(c-1) J_{j}{ }^{z} J_{i z}+h^{x} h_{j i x}-h_{j t}{ }^{x}{h_{i}}^{t}{ }_{x}
\end{align*}
$$

with the aid of (1.7), where $h^{x}=g^{j i} h_{j i}{ }^{x}$.

2. Parallel tensor fields

Let M be a submanifold isometrically immersed in a Sasakian manifold \tilde{M} tangent to the structure vector V. Then M is called a contact CR-submanifold ([12])of \tilde{M} if there exists a differentiable distribution $\mathcal{D}: p \longrightarrow \mathcal{D}_{p} \subset T_{p}(M)$ on M satisfying the following conditions :
(1) \mathcal{D} is invariant with respect to F, namely, $F \mathcal{D}_{p} \subset \mathcal{D}_{p}$ for each point p in M, and
(2) The complementary orthogonal distribution $\mathcal{D}^{\perp}: p \longrightarrow \mathcal{D}_{p}^{\perp} \subset$ $T_{p}(M)$ is totally real with respect to F, namely, $F \mathcal{D}_{p}^{\perp} \subset T_{p}^{\perp}(M)$ for each point p in M,
where $T_{p}(M)$ and $T_{p}^{\perp}(M)$ denote the tangent space and normal space respectively at $p \in M$. If $\operatorname{dim} \mathcal{D}_{p}^{\perp}=0$ (resp. $\operatorname{dim} \mathcal{D}_{p}=0$), then the contact $C R$-submanifold M is an invariant submanifold (resp. totally real submanifold) of \tilde{M}. If $\operatorname{dim} \mathcal{D}_{p}^{\perp}=\operatorname{dim} T_{p}^{\perp}(M)$, then M is a generic submanifold of \tilde{M}.

By the way, the contact $C R$ - submanifolds of a Sasakian manifold \tilde{M} are characterized as follows:

Lemma 1.1([12]). In order for a submanifold M of \tilde{M} to be a contact $C R$-submanifold, it is necessary and sufficient that

$$
f_{j}{ }^{t} J_{t}^{x}=0 \text { (equivalently } J_{j}^{x} f_{x}^{y}=0 \text {). }
$$

In such a case, $f_{j}{ }^{i}$ and $f_{y}{ }^{x}$ are f-structure in M and that in the normal bundle of M respectively.

A normal vector field $\xi=\left(\xi^{x}\right)$ is called a parallel section in the normal bundle if it satisfies $\nabla_{j} \xi^{x}=0$, and furthermore a tensor field S on M is said to be parallel in the normal bundle if $\nabla_{j} S$ vanishes identically.

In this section, the f-structure ([7]) in the normal bundle of a contact $C R$-submanifold is assumed to be parallel. In this case, the equation (1.12) turns out to be

$$
\begin{equation*}
h_{j t x} J^{t y}-h_{j t}{ }^{y} J_{x}{ }^{t}=0 . \tag{2.2}
\end{equation*}
$$

Remark 1. We notice here that $f_{y}{ }^{x}$ vanishes identically if M is a generic submanifold of a Sasakian manifold \tilde{M}. Thus, a generic submanifold of \tilde{M} has always a trivial f-structure in the normal bundle.

Let H be a mean curvature vector field of M. Namely, it is defined by $H=g^{j i} h_{j i}{ }^{x} C_{x} /(n+1)=h^{x} C_{x} /(n+1)$, which is independent of the choice of the local field of orthonormal frames $\left\{C_{x}\right\}$.

From now on we suppose that the mean curvature vector field H of M is nonzero and is parallel in the normal bundle. Then we may choose a local field $\left\{e_{\boldsymbol{x}}\right\}$ in such a way that $H=a C_{n+2}$, where $a=|H|$ in nonzero constant. Because of the choice of the local field, the parallelism of H yields

$$
\left[\begin{array}{l}
h^{x}=0, x \geqq n+3 \tag{2.3}\\
h^{*}=(n+1) a,
\end{array}\right.
$$

where here and in the sequel we denote the index $n+2$ by $*$. Since the f-structure in the normal bundle is parallel, it is easily seen form (2.1) that $f_{x}^{y} \nabla^{j} J_{j y}=0$ and hence $h^{z} f_{z}^{y} f_{y x}=0$ by means of (1.11). $f_{y}{ }^{x}$ being defined the f-structure, it follows that we get $h^{z} f_{z}^{x}=0$, which together with (2.3) gives

$$
\begin{equation*}
f_{*}^{x}=0 . \tag{2.4}
\end{equation*}
$$

because H is nontrivial. Therefore the second equation of (1.7) gives

$$
\begin{equation*}
J_{j x} J^{j *}=\delta_{x}^{*} . \tag{2.5}
\end{equation*}
$$

H being a normal vector field on M, the curvature tensor $R_{j i y x}$ of the connection in the normal bundle shows that $R_{j i * x}$ vanishes identically for any index x. Thus the Ricci equation (1.17) yields

$$
\begin{equation*}
h_{j t}{ }^{x} h_{i}^{t}-h_{i t}{ }^{x} h_{j}^{t}=\frac{1}{4}(c-1)\left(J_{j *} J_{i}^{x}-J_{i *} J_{j}^{x}\right) \tag{2.6}
\end{equation*}
$$

by means of (2.4), where we have put $h_{j}{ }^{k}=h_{j}{ }^{k *}$.
For a normal vector field ξ, let A_{ξ} be a shape operator of the tangent space $T_{p}(M)$ at p in the direction of ξ, which is defined by $g\left(A_{\xi} X, Y\right)=$
$G(\sigma(X, Y), \xi)$ for any tangent vectors X and Y of $T_{p}(M)$, where σ denotes the second fundamental form on M.

On the other hand, using (1.7), (2.1) and (2.5), we find

$$
\begin{aligned}
& \left\lvert\, \nabla_{k} h_{j i}+\frac{1}{4}(c-1)\left(f_{k j} J_{i}^{*}+\left.f_{k i} J_{j}^{*}\right|^{2}\right.\right. \\
& \quad=\left|\nabla_{k} h_{j i}\right|^{2}+(c-1)\left(\nabla_{k} h_{j i}\right) f^{k j} J^{i *}+\frac{1}{8}(c-1)^{2}\left(n-J_{j x} J^{j x}\right) .
\end{aligned}
$$

However, if we take account of (1.7), (1.16) and (2.1), then the second term of the right hand side of above equation is given by $-\frac{1}{4}(c-1)^{2}(n-$ $\left.J_{j x} J^{j x}\right)$. Thus, it follows that we have

$$
\begin{align*}
\left\lvert\, \nabla_{k} h_{j i}+\frac{1}{4}(c-1)\left(f_{k j} J_{i}^{*}\right.\right. & \left.+f_{k i} J_{j}^{*}\right)\left.\right|^{2} \tag{2.7}\\
& =\left|\nabla_{k} h_{j i}\right|^{2}-\frac{1}{8}(c-1)^{2}\left(n-J_{j x} J^{j x}\right) .
\end{align*}
$$

3 Normal f-structure on contact $C R$-submanifolds

In this section, we assume that the contact $C R$-submanifold M with parallel f-structure in the normal bundle immersed in a Sasakian space form $\tilde{M}^{2 m+1}(c)$ has nontrivial and parallel mean curvature vector.

Furthermore, we suppose that the second fundamental forms σ and the f-structure induced on the submanifold M are commutative to each other, that is, $h_{j}{ }^{t x} f_{t}{ }^{h}-f_{j}{ }^{t} h_{t}{ }^{h x}=0$ for any index x or, equivalently

$$
\begin{equation*}
h_{j t}{ }^{x} f_{i}{ }^{t}+h_{i t}{ }^{x} f_{j}{ }^{t}=0 . \tag{3.1}
\end{equation*}
$$

In this case, we say that the contact $C R$-structure induced on M is normal ([5]).

Transforming (3.1) by $J_{y}{ }^{j} f_{k}{ }^{i}$ and making use of (1.7) and (2.1), we find $h_{j t}{ }^{x} J_{y}{ }^{j}\left(\delta_{k}{ }^{t}-v_{k} v^{t}-J_{k}{ }^{z} J_{z}{ }^{t}\right)=0$, which together with (1.14) gives

$$
\begin{equation*}
h_{j t}{ }^{x} J_{y}{ }^{t}=P_{y z}{ }^{x} J_{j}{ }^{z}+v_{j}\left(\delta_{y}{ }^{x}+f_{y}{ }^{z} f_{z}{ }^{x}\right), \tag{3.2}
\end{equation*}
$$

where have put $P_{y z}{ }^{x}=h_{j i}{ }^{x} J_{y}{ }^{j} J_{z}{ }^{i}$ and hence it satisfies

$$
\begin{equation*}
P_{y z}{ }^{x} f_{x}{ }^{w}=0 . \tag{3.3}
\end{equation*}
$$

Denoting $P_{x y z}=g_{z w} P_{x y}{ }^{w}$, we see, in a direct consequence of (2.2), that $P_{x y z}$ is symmetric for all indices. When $x=n+2$ in (3.2) we have

$$
\begin{equation*}
h_{j t} J_{y}{ }^{t}=P_{y z *} J_{j}{ }^{z}+\delta_{y *} v_{j} \tag{3.4}
\end{equation*}
$$

because of (2.4).
Multiplying $J_{z}{ }^{j} J_{y}{ }^{i}$ to (2.6) and summing for j and i, we get

$$
\begin{equation*}
P_{y u *} P_{z}^{u x}-P_{z u *} P_{y}^{u x}=\frac{1}{4}(c+3)\left\{\delta_{z *} J_{j y} J^{j x}-\delta_{y *} J_{j z} J^{j x}\right\}, \tag{3.5}
\end{equation*}
$$

where we have used (1.9), (2.1), (2.5), (3.2), (3.3) and (3.4). Thus, $P_{y z x}$ being symmetric for all indices, it follows that we obtain

$$
\begin{align*}
& P_{z y x} P^{y x *}=P^{x} P_{z x *}+\frac{1}{4}(c+3)\left(J_{i x} J^{i x}-1\right) \delta_{z *}, \tag{3.6}\\
& P_{z x}{ }^{*} P_{y}{ }^{z *}=P_{z y x} P^{z * *}+\frac{1}{4}(c+3)\left(J_{y}{ }^{i} J_{i x}-\delta_{y}{ }^{*} \delta_{x}{ }^{*}\right), \tag{3.7}
\end{align*}
$$

where we denoted $P_{z}^{z x}=P^{x}$.
Defferentiating (3.4) covariantly along M and substituting (1.11) and (1.13), we find

$$
\begin{aligned}
&\left(\nabla_{k} h_{j t}\right) J_{y}{ }^{t}+h_{j}{ }^{t}\left(h_{k t}{ }^{z} f_{z y}-h_{k s y} f_{t}{ }^{s}\right) \\
&=\left(\nabla_{k} P_{y z *}\right) J_{j}{ }^{z}+P_{y z *}\left(h_{k j}{ }^{w} f_{w}{ }^{z}-h_{k t}{ }^{z} f_{j}{ }^{t}\right)+\delta_{y *} f_{k j}
\end{aligned}
$$

from which, taking the skew-symmetric part with respect to indices k and j, and using (1.16), (2.6) and (3.1), we obtain

$$
\begin{aligned}
& \frac{1}{4}(c-1)\left(J_{k}{ }^{*} f_{j t}-J_{j}{ }^{*} f_{k t}-2 J_{t}{ }^{*} f_{k j}\right) J_{y}{ }^{t}-2 h_{j}{ }^{t} h_{k s y} f_{t}{ }^{s} \\
& \quad=\left(\nabla_{k} P_{y z}{ }^{*}\right) J_{j}{ }^{z}-\left(\nabla_{j} P_{y z}{ }^{*}\right) J_{k}{ }^{z}-2 P_{y z}{ }^{*} h_{k t}{ }^{z} f_{j}{ }^{t}+2 \delta_{y}{ }^{*} f_{k j},
\end{aligned}
$$

or, equivalently

$$
\begin{align*}
-2 h_{j}{ }^{t} h_{k s y} f_{t}{ }^{s} & =\left(\nabla_{k} P_{y z}{ }^{*}\right) J_{j}{ }^{z}-\left(\nabla_{j} P_{y z}{ }^{*}\right) J_{k}{ }^{z} \\
& -2 P_{y z}{ }^{*} h_{k t}{ }^{z} f_{j}{ }^{t}+\frac{1}{2}(c+3) \delta_{y}{ }^{*} f_{k j} . \tag{3.8}
\end{align*}
$$

because of (2.1) and (2.5). Transforming (3.8) by $J_{x}{ }^{k}$ and making use of (2.1), (3.1) and (3.4), we get $\nabla_{j} P_{x y *}=\left(J_{x}^{t} \nabla_{t} p_{y z *}\right) J_{j}{ }^{z}$ and hence $\nabla_{j} P_{y x *}=\left(J_{y}{ }^{t} \nabla_{t} P_{x z *}\right) J_{j}{ }^{z}$. Thus, the equation (3.8) is reduced to

$$
h_{j}{ }^{t} h_{t s y} f_{k}{ }^{s}=P_{y z *} h_{j t}{ }^{z} f_{k}{ }^{t}+\frac{1}{4}(c+3) \delta_{y *} f_{j k},
$$

which together with the first equation of (1.7) gives

$$
\begin{aligned}
& h_{j t} h_{s y}^{t}\left(\delta_{i}^{s}-v_{i} v^{s}-J_{i}{ }^{z} J_{z}^{s}\right) \\
& =P_{y z *} h_{j t}^{z}\left(\delta_{i}^{t}-v_{i} v^{t}-J_{i}{ }^{w} J_{w}{ }^{t}\right)+\frac{1}{4}(c+3) \delta_{y *}\left(g_{j i}-v_{j} v_{i}-J_{j}^{z} J_{z i}\right) .
\end{aligned}
$$

By means of (3.2), (3.3) and (3.4), the last equation can be written as

$$
\begin{align*}
h_{j t} h_{i}{ }^{t}-\delta_{y *} v_{j} v_{i}-J_{j}{ }^{*} J_{i y} & =P_{y z}{ }^{*} h_{j i}^{z} \\
& +\left(P_{z y u} P_{v}^{u *}-P_{v z u} P_{y}{ }^{u *}\right) J_{j}{ }^{v} J_{i}{ }^{z} \tag{3.9}\\
& +\frac{1}{4}(c+3) \delta_{y}^{*}\left(g_{j i}-v_{j} v_{i}-J_{j}{ }^{z} J_{i z}\right),
\end{align*}
$$

which implies

$$
\begin{equation*}
h_{j i} h^{j i}{ }_{y}=h^{*} P_{y * *}+\frac{1}{4}(n-1)(c+3) \delta_{y}{ }^{*}+2 \delta_{y}{ }^{*}, \tag{3.10}
\end{equation*}
$$

where we have used (1.7), (1.9), (2.3), (2.5), (3.3) and (3.6), which shows that

$$
\begin{equation*}
h_{2}=h^{*} P_{* * *}+\frac{1}{4}(n-1)(c+3)+2, \tag{3.11}
\end{equation*}
$$

where we have defined $h_{2}=h_{j i} h^{j i}$. when $y=n+2$ in (3.9) and make use of (3.7), we find

$$
h_{j r} h_{i}^{r}=P_{z * *} h_{j i}^{z}+\frac{1}{4}(c+3)\left(g_{j i}-v_{j} v_{i}-J_{j *} J_{i *}\right)+v_{j} v_{i}+J_{j *} J_{i *},
$$

which together with (1.14) and (3.10) yields

$$
\begin{equation*}
h_{3}=h^{*}\left|P_{z * *}\right|^{2}+\frac{1}{4}(c+3)(n-2) P_{* * *}+\frac{1}{4}(c+3) h^{*}+3 P_{* * *}, \tag{3.12}
\end{equation*}
$$

where $h_{3}=h_{i r} h_{i}{ }^{r} h^{j i}$.
Making use of (1.7), (2.3) and (3.2), the equation (1.10) implies

$$
\nabla_{k} f_{j}^{k}=\left(n-J_{r x} J^{r x}\right) v_{j}+h^{*} J_{j *}-P_{x} J_{j}^{x},
$$

which implies

$$
\begin{equation*}
h^{j i} \nabla_{k}\left(J_{j *} f_{i}^{k}\right)=-h^{k h} h^{j i} f_{j k} f_{i h}+h^{*} P_{* * *}-P^{x} P_{x * *}+n-J_{j x} J^{j x}, \tag{3.13}
\end{equation*}
$$

where we have used (1.9), (1.11), (2.4) and (3.4).
By the way, making use of (1.7), (11.4), (3.1) and (3.6), we see that

$$
\begin{equation*}
h^{h k} h^{j i} f_{k j} f_{k i}=h_{2}-P^{x} P_{x * *}-1-\frac{1}{4}(c-1)\left(J_{i x} J^{i x}-1\right)-J_{j x} J^{j x} \tag{3.14}
\end{equation*}
$$

Therefore (3.13) turns out to be

$$
\begin{equation*}
h^{j i} \nabla_{k}\left(J_{j *} f_{i}{ }^{k}\right)=-\frac{3}{4}(c-1)\left(n-J_{j x} J^{j x}\right) . \tag{3.15}
\end{equation*}
$$

Since the submanifold M has parallel mean curvature vector, the Laplacian $\Delta h_{j i}$ of $h_{j i}$ is given, using the Ricci formula of $h_{j i}$ and (1.16), by

$$
\begin{align*}
\Delta h_{j i} & =R_{j r} h_{i}^{r}-R_{k j i h} h^{k h} \\
& +\frac{1}{4}(c-1) \nabla_{k}\left(J_{*}^{k} f_{j i}+J_{j *} f_{i}^{k}+2 J_{i *} f_{j}^{k}\right) . \tag{3.16}
\end{align*}
$$

On the other hand, by using (1.14), (2.3) and (2.6), the equation (1.18) implies

$$
\begin{aligned}
R_{j s} h_{i}^{s} h^{j i} & =\frac{1}{4}\{n(c+3)+2(c-1)\} h_{2}-\frac{1}{4}(c-1)(n+2) \\
& -\frac{3}{4}(c-1) h_{s}^{j} h^{s i} J_{j z} J_{i}^{z}+h^{*} h_{3}-h_{j r}^{x} h_{i s x} h^{r s} h^{j i} \\
& -\frac{1}{4}(c-1) h_{j}^{r x} h^{j i}\left(J_{r *} J_{i x}-J_{i *} J_{r x}\right)
\end{aligned}
$$

which together with (2.5), (3.2), (3.3), (3.4), (3.6) and (3.12) gives

$$
\begin{align*}
R_{j s} h_{i}^{s} h^{j i} & =\frac{1}{4}\{n(c+3)+2(c-1)\} h_{2}-\frac{1}{4}(c-1)(n+2) \\
& +\frac{1}{4}(c-1)^{2}-\frac{3}{4}(c-1) P^{x} P_{x * *} \\
& -\frac{1}{4}(c-1)(c+2) J_{j x} J^{j x}+\left|h^{*} P_{x * *}\right|^{2} \tag{3.17}\\
& +\frac{1}{4}(c+3)\left(h^{*}\right)^{2}+3 h^{*} P_{* * *} \\
& +\frac{1}{4}(c+3)(n-2) h^{*} P_{* * *}-h_{i r}^{x} h_{i s x} h^{r s} h^{j i} .
\end{align*}
$$

By means of (1.14), (2.5) abd (3.10), the equation (1.15) gives

$$
\begin{align*}
R_{k j i h} h^{k h} h^{j i} & =\frac{1}{4}(c+3)\left\{\left(h^{*}\right)^{2}-h_{2}\right\}+\frac{1}{2}(c-1) \\
& +\left|h^{*} P_{* * *}\right|^{2}+\frac{3}{4}(c-1) h^{h k} h^{j i} f_{k j} f_{h i} \\
& -h_{j r}{ }^{x} h_{i s x} h^{r s} h^{j i}+\frac{1}{2}(c+3)(n-1) h^{*} P_{* * *} \tag{3.18}\\
& +4 h^{*} P_{* * *}+\left\{\frac{1}{4}(c+3)(n-1)+2\right\}^{2} .
\end{align*}
$$

From (3.17) and (3.18) we have

$$
\begin{aligned}
& R_{j s} h_{i}^{s} h^{j i}-R_{k j i h} h^{k h} h^{j i}=\left\{\frac{1}{4}(c+3) n+1\right\}\left(h_{2}-h^{*} P_{* * *}\right)-\frac{1}{4}(c-1)(n+2) \\
& +\frac{1}{4}(c-1)^{2}-\left\{\frac{1}{4}(c+3)(n-1)+2\right\}^{2}-\frac{1}{2}(c-1)+\frac{3}{16}(c-1)^{2}\left(J_{j x} J^{j x}-1\right) \\
& +\frac{3}{4}(c-1)\left(J_{j x} J^{j x}+1\right)-\frac{1}{4}(c-1)(c+2) J_{j x} J^{j x}
\end{aligned}
$$

because of (3.14), which together with (3.11) implies that

$$
\begin{equation*}
R_{j s} h_{i}^{s} h^{j i}-R_{k j i h} h^{k h} h^{j i}=\frac{1}{16}(c-1)^{2}\left(n-J_{j x} J^{j x}\right) . \tag{3.19}
\end{equation*}
$$

Multiplying $h^{j i}$ to (3.16) and summing for j and i and taking account of (3.15) and (3.19), we obtain

$$
h^{j i} \Delta h_{j i}=-\frac{1}{8}(c-1)^{2}\left(n-J_{j x} J^{j x}\right)
$$

Substituting this and (2.7) into the identity :

$$
\frac{1}{2} \Delta h_{2}=h^{j i} \Delta h_{j i}+\left|\nabla_{k} h_{j i}\right|^{2}
$$

we find

$$
\frac{1}{2} \Delta h_{2}=\left|\nabla_{k} h_{j i}+\frac{1}{4}(c-1)\left(J_{j *} f_{k i}+J_{i *} f_{k j}\right)\right|^{2}
$$

Thus, we have
Lemma 3.1. Let M be a compact $(n+1)$-dimensional contact $C R$ submanifold with nontrivial and parallel mean curvature vector and with parallel f-structure in the normal bundle in a Sasakian space form $\tilde{M}^{2 m+1}(c)$. If the f-structure induced on M is normal, then we have

$$
\begin{equation*}
\nabla_{k} h_{j i}=-\frac{1}{4}(c-1)\left(J_{j *} f_{k i}+J_{j *} f_{k j}\right) \tag{3.20}
\end{equation*}
$$

REmark 2. If M is generic in Lemma 3.1, then we have (3.20).

4. Eigevalues of the shape operator

Let M be a contact $C R$-submanifold of a Sasakian space form $\tilde{M}^{2 m+1}$ (c) satisfying the hypothesis of Lemma 3.1. Furthermore we will consider the case where the second fundamental form in the direction of the mean curvature vector on M is parallel. In the sequel, the shape operator in the direction of C_{n+2} is denoted by A^{*}. For any constant λ over M, we define a smooth determinant function $\operatorname{det}\left(A^{*}-\lambda I\right)$ on M, where I is the identity transformation of the tangent space. Since $h_{j i}$ is parallel, we have $\nabla \operatorname{det}\left(A^{*}-\lambda I\right)=0$. This means that the smooth function $\operatorname{det}\left(A^{*}-\lambda I\right)$ is constant over M. From the uniquness of roots, we see that all eigenvalue functions λ_{i} of A^{*} are constant. Taking account of the Ricci formular for $h_{j i}$ and the fact that $R_{j i x *}=0$ and $\nabla_{k} h_{j i}=0$ we find $\left(\lambda_{j}-\lambda_{i}\right) R_{j i i j}=0$ for any fixed indices j and i. Thus we have

Theorem 4.1. Let M be a compact contact $C R$-submanifold with nontrivial and parallel mean curvature vector and with parallel f-structure in the normal bundle in a unit sphere $S^{2 m+1}(1)$. If the f-structure induced on M is normal and if the eigenvalue functions of the shape operator in the direction of the mean curvature vector are mutually distinct, then M is flat.

Remark 3. For a totally real submanifold of a Sasakian space form, Theorem 4.1 is valid [3].

Corollary 4.2. Let M be a compact generic submanifold with nontrivial and parallel mean curvature vector in a unit sphere $S^{2 m+1}(1)$. If the f-structure induced on M is normal and if the eigenvalue functions of the shape operator in the direction of the mean curvature vector are mutually distinct, then M is flat.

Now, let $\mu_{1}, \cdots, \mu_{\alpha}$ be mutually distinct eigenvalue of A^{*} and n_{1}, \cdots, n_{α} their multiplicities. Since A^{*} is parallel, the smooth distribution $T_{a}(a=1, \cdots, \alpha)$ which consists of all eigenspaces associated with the eigenvalue can be defined and is parallel. M is assumed to be simply connected and complete, then by means of the de Rham decomposition theorem, the submanifold is a product of Riemannian manifolds $M_{1} \times$ $\cdots \times M_{\alpha}$, where the tangent bundle of M_{a} corresponds to T_{a}. Since the shape operator A^{*} restricted to T_{a} is propotional to the identity transformation of T_{a} and each submanifold M_{a} is totally geodesic in M, the mean curvature vector of M is an umbilical section of M_{a} in $\tilde{M}^{2 m+1}(c)$. Thus, by means of the above arguments and that of Lemma 3.1, we have

Theorem 4.3.. Let M be an $(n+1)$-dimensional compact and simply connected contact $C R$-submanifold with nontrival and parallel mean curvature vector and with parallel f-structure in the normal bundle in a unit sphere $S^{2 m+1}(1)$. If the f-structure induced on M is normal, then M is a product of Riemannian manifolds, $M_{1} \times \cdots \times M_{\alpha}$, where α is the number of the distinct eigenvalues of the shape operator in the direction of the mean curvature vector field of M, and the mean curvature vector field of M is an umbilical section of $M_{a}(a=1, \cdots, \alpha)$.

Corollary 4.4. Let M be an ($n+1$)-dimensional compact and simply connected generic submanifold with nontrivial and parallel mean curvature vector in a unit sphere $S^{2 m+1}(1)$. If the f-structure induced on M is normal, then we have the same conclusions as those of Theorem 4.3.

References

1. T. Ikawa and M. Kon, Remarks on anti-invariant submanifolds of a Sasakian manifold, Tensor N.S. 30 (1987), 239-246.
2. I. Ishihara, Anti-invariant submanifolds of a Sasakian space form, Kodai Math. J. 2 (1979), 171-186.
3. U-H. Ki, M. Kameda and S. Yamaguchi, Compact totally real submanifolds with parallel mean curvature vector field in a Sasakian space form, TRU Math. 23 (1987)), 1-15.
4. U-H. Ki and Y. H. Kim, Generic submanifolds with parallel mean curvature vector of an odd-dimensional sphere, Kodai Math. J. 4 (1981), 353-370.
5. E. Pak, U-H. Ki, J. S. Pak and Y.H. Kim, Generic submanifolds with normal f-structure of an odd-dimensional sphere(I), J. Korean Math. Soc. 20 (1983), 141-161.
6. S. Yamaguchi, M. Kon and T. Ikawa, On C-totally real submanifolds, J. Diff. Geom. 11 (1976), 59-64.
7. K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+f$ $=0$, Tensor, N.S. 14 (1963), 99-109.
8. K. Yano and M. Kon, Anti-invariant submanifolds, Marcel Dekker Inc., 1976.
9. \qquad Anti-invariant submanifolds of a sasakian space form, Tôhoku Math. J. 29 (1977), 9-23.
10. , Anti-invariant submanifolds of Sasakian space form II, J. Korean Math. Soc. 13 (1976), 1-14.
11. , Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163-196.
12. , Structures on manifolds, World Scientific Publ., 1984.
13. _ On contact CR-submanifolds, J. Korean Math. Soc. 26 (1989), 231-262.

Department of Mathematics Educations Kookmin University Seoul 136-702, Korea and
Science University of Tokyo
Yamaguchi College
Yamaguchi 756, Japan
and
Department of Mathematics Educations
Kyungpook University
Taegu 702-701, Korea

[^0]: Received February 5, 1990.

 * Supported by Korea Research Foundation (1986).

