Comm. Korean Math. Soc. 6(1991), No. 1, pp. 119-133

COMPACT CONTACT CR-SUBMANIFOLDS
WITH PARALLEL MEAN CURVATURE
VECTOR OF A SASAKIAN SPACE FORM®

JAE-BOK JUN, MASUMI KAMEDA AND U-HANG KI

Introduction

The theory of a CR-submanifold of a Sasakian manifold was investi-
gated from two different points of view, namely, one is the case where
CR-submanifolds are tangent to the structure vector field, and the other
is the case where those are normal to the structure vector field (cf. [11],
[12],[13]).

Many subjects for CR-submanifolds in a Sasakian manifold have been
studied in [2],[3],[4],[5],[9] and [10] and some interesting results have been
obtained. One of which done by Kameda, Ki and Yamaguchi asserts the
following :

THEOREM A ({3]). Let M be a compact totally real submanifold
tangent to the structure vector field in a Sasakian space form. If the
mean curvature vector is nontrivial and parallel in the normal bundle,
and if the induced f-structure in the normal bundle is parallel, then the
shape operator in the direction of the mean curvature vector of M is

parallel.

The purpose of the present paper is to investigate compact contact
CR-submanifolds in a Sasakian space form, of which the mean curvature
vector field is parallel.

In this paper, all manifolds are assumed to be smooth and connected.
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1. Submanifolds of a Sasakian manifold

Let M be a (2m + 1)-dimensional Sasakian manifold covered by a

system of coordinate neighborhoods {U/ : y} and with structure tensor
{Fg*,Gcp,VA}. We then have

FPFf = 68 + VgVA VaF,B =0, FAVE =0,

1.1
(1) VAVA =1,GppFPPF,P = Goa— VeVa,

Vi being the associated 1-form of V4, where here and in the sequel,
the indices A, B,C, - run over the range {1,---,2m + 1}. Denoting
by 7 g the operator of covariant differentiation with respect to Gp4, we
also have

(1.2) VBFCA = -—GCBVA -+ 6BAV(;, VBVA = FBA.

Let M be an (n + 1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {U; z"} and isometrically immersed
in M by the immersion ¢ : M — M. When the argument is local, M
need not be distinguished from ¢(M). We represent the immersion @
locally by y4 = y“(z"*). Throughout this paper, the indices A, j,1, - - -
run over the range {1,--- ,n+1} and we assume that the submanifold M
of M is tangent to the structure vector field VA. If we put Bf = ij,
0; = 8/02’, then B; = (B#) are (n + 1)-linearly independent vectors of
M tangent to the submanifold. We choose 2m — n mutually orthogonal
unit normals C; = (C2) to M. Since the immersion is isometric, we
then have

(1.3)  gji=GBaB}Bf, g.y = GpaCZCy, GpaBfC =0,

gji and gy being the induced metric tensor of M and that of the nor-
mal bundle of M respectively, where here and in the sequel the indices
z,Y,2,u,v,w run over the rang {n +2,n + 3,--- ,2m + 1}. Therefore,
denoting by ¥7; the operator of van der Waerden-Bortolotti covariant
differentiation formed with g;;, the equations of Gauss and Weingarten
for M are respectively obtained:

(1.4) viBi* = h;;7CY, v;CF = —h;*Bf,
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where h;,;® are the second fundamental forms in the direction of C; and
related by hj"z = hj,-zg"h = hj,'ygihgy:n (¢ = (95i)"!. The transforms
of BjA and C,4 by F are represented in each coordinate neighborhood
as follows:

(1.5) Fg*B/®=fBA+J;"C A Fs'CB=-J'BA+f3CA

where we have put fj; = G(JB,',B;),_ Jijz = G(JB;,Cy), J.j = —G(JCy,
Bj)a fzy = G(Jsz Cy), fjh = fji!]’h, sz = ijgyz and fzy = fr:9%Y,
g¥* being the contravariant components of g,,. From these definitions
we verify that f;; + fij = 0, J;z = J;j and fzy + fyz = 0. Since the
structure vector V4 is tangent to M, we can also put

(1.6) VA = viBA

for a vector field v* on M.
By the properties of the Sasakian structure tensors, it follows, from

(1.5) and (1.6) that we have

(17) fjtfti = —6_]' + ’Uj'l)i + J]: ziv fzyfyz = _6zz + Jthtz’
(1.8) fE+ I =0,
(1.9) 'UJJJ': = O,vaJ-‘ = O,Uj'UJ =1.

Differentiating (1.5) and (1.6) covariantly along M and making use of
(1.1), (1.2), (1.4) and these equations, we easily find

(1.10) Vifit =6 vi— gt + R T — B FTR,
(1.11) Vidi®=h; 2 f,F— b

(1.12) Vify" = hji"J,! = hju J*,

(1.13) Vivi = fjis

(1.14) hivt = J;*.

In the rest of this section we suppose that the ambient Sasakian man-
ifold M is of constant ¢-holomorphic sectional curvature ¢ and of real
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dimension 2m + 1, which is called a Sasakian space form, and is denoted
by M?*™+1(c). Then the curvature tensor R of M2™*1(¢) is given by

~ 1
Rpcea = Z(c +3)GpaGce — GpGea)

1
+ Z(c —1)(VeVaGpB — VeVBGpa + VDVBGca — VDVaGen
+ FpaFcp — FppFca — 2FpcFRa).
Thus, we see, using (1.3), (1.5) and (1.6), that equations of the Gauss,
Codazzi and Ricci for M are respectively obtained:
1
Rijin = Z(c + 3)(grrgji — gingki) + hyi hjiz — byt hiiz
1
(1.15) + Z(c — 1) (vivigjn — vjVigkn + VjURGRi — VRVAGji

+ fenfii = finfui — 2fxjfin),
(116)  ehy® — Vihe = gl = DT i = Iy fui = 20,7 Fag),

1
Rjiye = Z(c = V)(JjzJiy — JicJjy — 2f5ifyz)

+ hjizh;'ty - hitzhjty7

(1.17)

where R and Rj;y, are the Riemannian curvature tensor of M and
that with respect to the connection induced in the normal bundle of
M respectively. We see from (1.15) that the Ricci tensor of M can be
expressed as follows:

1 1

Rji = —{n(c+3) +2(c - 1)}gji — =(c — 1)(n + 2)v,v;
4 4

(1.18) 3

with the aid of (1.7), where h* = gjihji’.
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2. Parallel tensor fields

Let M be a submanifold isometrically immersed in a Sasakian man-
ifold M tangent to the structure vector V. Then M is called a contact
CR-submanifold ([12))of M if there exists a differentiable distribution
D:p— D, CT,(M) on M satisfying the following conditions :

(1) D is invariant with respect to F', namely, FD, C D, for each
point p in M, and
(2) The complementary orthogonal distribution D+ : p —» 'D,',L C
T,(M) is totally real with respect to F, namely, F D:' C TPJ'(M )
for each point pin M,
where T,(M) and TPJ'(M )} denote the tangent space and normal space
respectively at p € M. If dim’DIf‘ = 0 (resp. dimD, = 0), then the
contact CR-submanifold M is an invariant submanifold (resp. totally
real submanifold) of M. If dimD“," = dim TPJ'(M ), then M is a generic
submanifold of M.

By the way, the contact CR- submanifolds of a Sasakian manifold M
are characterized as follows:

LEMMA 1.1([12]). In order for a submanifold M of M to be a contact
C R-submanifold, it is necessary and sufficient that

fjthz = 0 (equivalently J;*f,* = 0).

In such a case, fji and f,* are f-structure in M and that in the normal
bundle of M respectively.

A normal vector field £ = (£7) is called a parallel section in the normal
bundle if it satisfies 7;€* = 0, and furthermore a tensor field S on M is
said to be parallel in the normal bundle if \7;S vanishes identically.

In this section, thef-structure ([7]) in the normal bundle of a contact
C R-submanifold is assumed to be parallel. In this case, the equation
(1.12) turns out to be

(2.2) hjeeJW — b} T, =0.
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REMARK 1. We notice here that f,* vanishes identically if M is a

generic submanifold of a Sasakian manifold M. Thus, a generic sub-
manifold of M has always a trivial f-structure in the normal bundle.

Let H be a mean curvature vector field of M. Namely, it is defined
by H = gjihji”C,/(n + 1) = A*C./(n + 1), which is independent of the
choice of the local field of orthonormal frames {C,}.

From now on we suppose that the mean curvature vector field H of M
is nonzero and is parallel in the normal bundle. Then we may choose a
local field {e,} in such a way that H = aCp42, where a = |H| in nonzero
constant. Because of the choice of the local field, the parallelism of H
yields

h*=0,z2n+3

(2:3) B* = (n +1)a,

where here and in the sequel we denote the index n + 2 by *. Since the
f-structure in the normal bundle is parallel, it is easily seen form (2.1)
that f,¥ 7’ J;, = 0 and hence h*f,Yf,, = 0 by means of (1.11). I,°
being defined the f-structure, it follows that we get A*f,* = 0, which
together with (2.3) gives

(2.4) f.r=0.
because H is nontrivial. Therefore the second equation of (1.7) gives
(2.5) Jizd7* =6,

H being a normal vector field on M, the curvature tensor Ry, of the
connection in the normal bundle shows that R;i., vanishes identically
for any index z. Thus the Ricci equation (1.17) yields

x z 1 z
(2-6) h;"hi' — bR} = Z(C = D)(Jjedi® = Jixd;%)

by means of (2.4), where we have put hjk = hj"*.
For a normal vector field £, let A, be a shape operator of the tangent
space T,(M) at p in the direction of £, which is defined by g(A:X,Y) =
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G(0(X,Y),£) for any tangent vectors X and Y of T,(M), where o de-
notes the second fundamental form on M.
On the other hand, using (1.7), (2.1) and (2.5), we find

1 x .
| Vk hjit+ 7(c = D(fis ;™ + fuid;"[?
| )
=| V& kjil® + (e — 1)(Vrhi) YT + gle— 1)%(n — J;5J7%).

However, if we take account of (1.7), (1.16) and (2.1), then the second
term of the right hand side of above equation is given by —3(c—1)%(n —
JizJ7%). Thus, it follows that we have

1 * *
(2.7) | V& hj,' + Z(C— 1)(fij,- + fkiJj )|2

1 .
= | v hjil® - g(c —1)2(n — J;. J7%).

3 Normal f-structure on contact C R-submanifolds

In this section, we assume that the contact C R-submanifold M with
parallel f-structure in the normal bundle immersed in a Sasakian space
form M?™+1(c) has nontrivial and parallel mean curvature vector.

Furthermore, we suppose that the second fundamental forms o and
the f-structure induced on the submanifold M are commutative to each
other, that is, h;** f,* — fi*h** =0 for any index z or, equivalently

(3.1) hjtzf,‘t + hitzfjt = 0.

In this case, we say that the contact CR-structure induced on M is
normal ([5]).

Transforming (3.1) by Jyffk‘ and making use of (1.7) and (2.1), we
find h;*J,7 (6 — viv' — J,*J,") = 0, which together with (1.14) gives

(3.2) h; T} = P, J* +vi(6,7 + £, f.%),
where have put P,.* = h;;* Jyj J.! and hence it satisfies

(3.3) P,2f," =0.
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Denoting Pry. = g.wP,,”, We see, in a direct consequence of (2.2),
that P;,. is symmetric for all indices. When z = n 4 2 in (3.2) we have

(3.4) hjtJyt = Pyz*sz + 6y*'vj
because of (2.4).
Multiplying J,’J,' to (2.6) and summing for j and i, we get

1 . )
(35)  PpueP,"* — Paa Py = 2(c+ 3){6:Jjy 7™ = 6,005207%},

where we have used (1.9), (2.1), (2.5), (3.2), (3.3) and (3.4). Thus, P,.,
being symmetric for all indices, it follows that we obtain

(3.6) P,,.P¥** = P°P,., + %(c + 3)(JizJ = — 1)6..,
* zZ* *% 1 ] L %
(3.7) P,;"Py™ = Pye ™ + 2(c + 3)(J, iz — 6,76,

where we denoted P,** = P*.
Defferentiating (3.4) covariantly along M and substituting (1.11) and
(1.13), we find

(thjt)‘]yt + h’jt(hktzfzy - hksyft s)
= (ViPyze) ;" + Pyue by fuF — had' %) + by Sy

from which, taking the skew-symmetric part with respect to indices &
and j, and using (1.16), (2.6) and (3.1), we obtain

1 * * * s
Z(C - 1)(Jx Jie— Jj JFre —2J; fkj)']yt - Zhjthksyft
= (vkpyz*)']jz - (Vijz*)sz - 2Pyz*hktzfjt + 26y*fkj>
or, equivalently
_2hjthksyft s _ (kayz*)sz _ (Vijz*)sz

(38) *p zgpt 1 *
- 2Pyz b fj + §(c+ 3)63; fkj‘
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because of (2.1) and (2.5). Transforming (3.8) by J,* and making use

of (2.1), (3.1) and (3.4), we get V;Prye = (J, Vi Pyzs)J;* and hence
ViPyze = (J, V1 Prze)J;*. Thus, the equation (3.8) is reduced to

e e’ = Pysahyitfif + 3(c+ )6 pu it
which together with the first equation of (1.7) gives
hjch,' y(8;" — viv® — J;*J.%)
= Pyeah (55" — viv* = J,2J) + (e + 3)6yul05i — vyvi — J;7 Vi)
By means of (3.2), (3.3) and (3.4), the last equation can be written as

hjth,'ty - 6y*vjvi - Jj*Jiy = Pyz*hjiz

(39) + (Plyqu'“ - PvzuPyu‘)Jj”J,'z
1 *
+ 7(c+3)8,%(gji — vjvi — J;* i),
which implies
. 1
(310) hjih'"y = h*Py*t + Z(n -_ 1)(0 + 3)6!’* + 26!;,

where we have used (1.7), (1.9), (2.3), (2.5), (3.3) and (3.6), which shows
that

(3.11) hy = h*Pase + -i—(n —1)c+3)+2,

where we have defined hy = hjihji. when y = n + 2 in (3.9) and make
use of (3.7), we find

1
hjrhir = qu:hj,'z + Z(C + 3)(9]: — U0 — Jj*Ji*) + VU + thJi*a
which together with (1.14) and (3.10) yields

(312) hs = h*|P.l? + %(c +3)(n = 2)Pous + -i-(c +3)h* 4 3Py,
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where hs = hih;"h7.
Making use of (1.7), (2.3) and (3.2), the equation (1.10) implies

kajk = (n = JpzJ )i + h*Jju — P, J;%,
which implies
(313) hjivk(']j*fik) = —hkhhj'ifjkfih'*“h*P*t*_Psz**‘i'n"szsz,

where we have used (1.9), (1.11), (2.4) and (3.4).
By the way, making use of (1.7), (11.4), (3.1) and (3.6), we see that

(3.14) R* R fi;fri = hy— P*Ppy—~1— i—(c —1)(J;z I = 1) = Jjp J72.
Therefore (3.13) turns out to be
(3.15) W k(T fi*) = “g(c - 1)(n ~ JjzJ7%).

Since the submanifold M has parallel mean curvature vector, the
Laplacian Ahj; of hj; is given, using the Ricci formula of k;; and (1.16),
by

Ahj; = Rjch;” — Rijinh™*

3.16
(3.16) + 21{(6—1) Ve (LK fji + Tin 5 4+ 200 ;).

On the other hand, by using (1.14), (2.3) and (2.6), the equation
(1.18) implies

Rjh h = -‘-11-{n(c +3)+2(c—1)}hs — %(c —1)(n+2)

3 j 7, 8t z * z rsg jt
= (e = DRR T3 0% + hhy — i higsh™

- ;]I‘(C - l)hjrzhji(‘]r*]i: - Ji*Jrz)a
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which together with (2.5), (3.2), (3.3), (3.4), (3.6) and (3.12) gives

1 1
Rjh°h*" = Z{n(c +3)+2(c—1)}h2 — Z(C -1)(n+2)
1 2 3 z
+ (6= 1= 2(e - )PP,
1 .
(3.17) = (6= e+ 7% + B P |
+5(c+ 3)(h)? +3h° P,
+ %(c +3)(n — 2)A* Pase — by, *hiseh™ R,
By means of (1.14), (2.5) abd (3.10), the equation (1.15) gives
khpji _ L 2 1
Rijinh™ "R = Z(C+ I{(R*)" —ha} + E(C— 1)
3 g
+ [h*Pos]® + Z(c — DA RI £ frs
(3.18) O
= b hiseh P 4 2(c+3)(n = Dh*Paa,
1
+ 4h*P, .. + {Z(c +3)(n - 1)+ 2}2.
From (3.17) and (3.18) we have
R h°h7 — Ryjiph*" b7 = {i(c +3)n 4 1}(hy — h*P,,,) — %(c - 1)(n+2)
1 1 1 3 .,
217 (e +8)n - 1) 427 - 2(e= 1)+ (e~ DA(Tjud* - 1)
. 1 :
+ 2o = DTl +1) = (e = 1e+2) 2"

because of (3.14), which together with (3.11) implies that

(3.19) Rjsh;*h7* — Ryjinh**hit = 11—6(c —1)%(n - J;, 7).
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Multiplying A7* to (3.16) and summing for j and 7 and taking account
of (3.15) and (3.19), we obtain

B ARy = -—-;-(c — 1) (n — J;p 057,
Substituting this and (2.7) into the identity :
1 ..
5 Dby =h"' Ahji+| T hjil*

we find 1 1
3 Ahy=|Vi hji + Z(C = 1)(Jjafri + Tiufii)2

Thus, we have

LEMMA 3.1. Let M be a compact (n + 1)-dimensional contact CR-
submanifold with nontrivial and parallel mean curvature vector and
with parallel f-structure in the normal bundle in a Sasakian space form
M?*™+Y(¢). If the f-structure induced on M is normal, then we have

1
(3.20) Vihji = —2(e = D(Jjafui + Jjefri).
REMARK 2. If M is generic in Lemma 3.1, then we have (3.20).

4. Eigevalues of the shape operator

Let M be a contact CR-submanifold of a Sasakian space form M 2™+!
(c) satisfying the hypothesis of Lemma 3.1. Furthermore we will consider
the case where the second fundamental form in the direction of the mean
curvature vector on M is parallel. In the sequel, the shape operator in
the direction of C, 42 is denoted by A*. For any constant A over M, we
define a smooth determinant function det(A* — AI) on M, where I is
the identity transformation of the tangent space. Since hj; is parallel,
we have 7det(A* — AI) = 0. This means that the smooth function
det(A* — M) is constant over M. From the uniquness of roots, we see
that all eigenvalue functions A; of A* are constant. Taking account of
the Ricci formular for kj; and the fact that Rjiz« = 0 and yrhj;; = 0 we
find (Aj — Ai)Rjii; = 0 for any fixed indices j and ¢. Thus we have
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THEOREM 4.1. Let M be a compact contact C R-submanifold with
nontrivial and parallel mean curvature vector and with parallel f-structure
in the normal bundle in a unit sphere $S?™*1(1). If the f-structure in-
duced on M is normal and if the eigenvalue functions of the shape oper-
ator in the direction of the mean curvature vector are mutually distinct,

then M is flat.

REMARK 3. For a totally real submanifold of a Sasakian space form,
Theorem 4.1 is valid [3].

COROLLARY 4.2. Let M be a compact generic submanifold with non-
trivial and parallel mean curvature vector in a unit sphere S*™*+1(1). If
the f-structure induced on M is normal and if the eigenvalue functions

of the shape operator in the direction of the mean curvature vector are
mutually distinct, then M is flat.

Now, let yy,- -+ , io be mutually distinct eigenvalue of A* and n,--- ,
n, their multiplicities. Since A* is parallel, the smooth distribution
T.(a = 1,---,a) which consists of all eigenspaces associated with the
eigenvalue can be defined and is parallel. M is assumed to be simply
connected and complete, then by means of the de Rham decomposition
theorem, the submanifold is a product of Riemannian manifolds M; x

- X M,, where the tangent bundle of M, corresponds to T,. Since
the shape operator A* restricted to T, is propotional to the identity
transformation of T, and each submanifold M, is totally geodesic in
M, the mean curvature vector of M is an umbilical section of M, in
M Zm+1(¢). Thus, by means of the above arguments and that of Lemma
3.1, we have

THEOREM 4.3.. Let M be an (n + 1)-dimensional compact and sim-
ply connected contact C R-submanifold with nontrival and parallel mean
curvature vector and with parallel f-structure in the normal bundle in a
unit sphere S*™1(1). If the f-structure induced on M is normal, then
M is a product of Riemannian manifolds, My X - -- x M, where a is the
number of the distinct eigenvalues of the shape operator in the direction
of the mean curvature vector field of M, and the mean curvature vector

field of M is an umbilical section of My(a =1,--- ,a).
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COROLLARY 4.4. Let M be an (n+ 1)-dimensional compact and sim-

ply connected generic submanifold with nontrivial and parallel mean cur-
vature vector in a unit sphere $?™%1(1). If the f-structure induced on
M is normal, then we have the same conclusions as those of Theorem

4.3.
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