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SOLVABILITY OF CONVOLUTION EQUATIONS IN K:~

DAE HYEON PAHK AND BYUNG KEUN SOHN

S. Sznajder and Z. Zielezny [5,6] showed that the solvability of con­
volution equations in K:~,p ~ 1, could characterize the local growth
condition of the Fourier transform of the given convolutor. In this pa­
per we study the same problem in the space K:~. In other words, let
O~(K:~, K:~) be the space of convolution operators in K:~. Under what
conditions on S E O~(K:~, x:~) is S * K:~ = K:~? The last equality means
that the mapping u ~ S *u maps K:~ onto K:~. We found the following
one sufficient condition and one necessary condition for the solvability
of the convolution equation

(1)

in K:~:

THEOREM 1. H S is a distribution in O~(K:~, K:~) and there exist pos­
itive constants c and N such that

(2) sup IS(z + e)1 >
Izl$M( t log(log(lO+IED»

zec"

c

for all eE Rn, then S * K:~ = K:~.

THEOREM 2. H S is a distribution in O~(K:~, K:~) satisfying S * K:~ =
K:~, then there exist constants c and N such that

(3) sup IS(z + e)1 >
Izl$M(t log(lO+IEI»

zec"

c

for all eERn.
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REMARK. We expect the condition (3) will be the necessary and suf­
ficient condition for the solvability of the convolution equation (1) in K~.

But we did not succeed yet.

Before presenting the proofs we state the basic facts about the spaces
K~ and O~(K~,K~); for the proofs we refer to [3,4].

We denote by Ke the space of all functions cp E CClO(Rn) such that

Vk(cp) = sup eM(k1xDlnQcp(x)/ < 00, k = 0,1,2""
xERn,IQ/$k

The topology in Ke is defined by the family of semi-norms Vk' Then Ke

becomes a Frechet space.
The dual K~ of Ke is a space of distributions. A distribution u is in

K~ if and only if there exists a multi-index O!, an integer k ;::: 0 and a
bounded, continuous function j on Rn such that

u = nQ[exp(M(klxl))j(x)].

If u E K~ and cp EKe, then the convolution u * ,p is a function in
CClO(Rn) defined by

u * cp(x) =< uy,cp(x - y) >,

where < u, cp >= u(cp).
The space O~(K~, K~) of convolution operators in K~ consists of dis­

tributions S E K~ satisfying one of the following equivalent conditions

(i) The products Sx exp(M(klxl)), k = 0,1,2"" are tempered distri­
butions.

(ii) For every k ;::: 0 there exists an integer m ;::: 0 such that
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where f 0" lal :5 rn, are continuous functions in Rn whose products with
exp(M(klxl)) are bounded.

(iii) For every cp E K~ the convolution S * cp is in K~; moreover, the
mapping cp -+ S * cp of Ke into Ke is continuous.

If S E O~(JC~, JC~) and S is the distribution in K~ defined by < S, cp >=
< Sx, cp(-x) >,4J EKe' then S is also in O~(K~, K~). The convolution
of S with u E K~ is then defined by

(4) <S*u,cp>=<u*S,cp>=<u,S*cp>, cpEKe •

For a function cp EKe' the Fourier transform

can be continued in en as an entire function such that

where (= ~+i77 and O(x) = (lxl+l)log(lxl+l)-lxl is the Young's dual
function of M(x). We denote by K e the space of Fourier transforms of
functions in Ke . If the topology in K e is defined by the family of semi­
norms Wk, then the Fourier transformation is an isomorphism of Ke onto
K e •

The dual K~ of K e is the space of Fourier transforms of distributions
in K~. The Fourier transform u of a distribution u E K~ is defined by
the Parseval formula'

< u,ep >= (21l"t < ux,cp(-x) >.

For S E O~(K~, JC~), the Fourier transform S is a function which can
be continued in en as an entire function having the following property
: For every k > 0 there exists constants c and N such that

(6)

Futhermore, if S E O~(JC~, K~), and u E JC~, we have the formula

(7)
__ A

S*u = Su,
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where the product on the right-hand side is defined in K~ by < Bu,.,p >=
< u, B.,p >,.,p EKe.

In the proof of our theorem we shall make use of the following lemma
of L. HOrmander ( See [3], lemma 3.2):

IT F, G and F / G are entire functions and r be an arbitrary positive
number, then

IF(C)/G(C)I :s; ( sup IF(z)l)( sup IG(z)l)/( sup IG(z)l?
1r;-zl<4r 1r;-zl<4r ,r;-zl<r .

where C, z E en.
Proof of the theorem 1. Let T = 8, then T satisfies the hypotheses

of the theorem. Define the map, for given v E K:~, Lv : T *K:e -+ C by
Lv(T * cp) =
< v, cp > for every cp E K: e • Then Lv is a linear map on the subspace
T *K:e of K:e • In order to prove the theorem it suffices to show that Lv is
continuous on T * K:e • Indeed, we can extend Lv, by the Hahn-Banach
theorem, to a continous linear functional on K: e , i.e. to a distribution in
K:~, call it u. Then < S *u, cp >=< u, T *<p >= Lv(T * e.p) =< v, <p > for
all cp E K:e • Hence S * u = v and so S * K:~ = X:~. Futhermore, since the
continuity of Lv is equivalent to that of the map T*cp -+ <p : T*K:e -+ K:e
and the Fourier transform is an isomorphism from K:e onto K e , it suffices
to prove the equivalent statement that the mapping Tep -+ ep : TKe -+

K e is continuous.
Suppose that Tep = .,'/J, where ep,.,'/J EKe. We recall that T is an entire

function satisfying condition (2) and an estimate, {or given € > 0, of the
form (6):

for some constant c and NI. Setting

(8)
1

r =M('2 10g(log(1O+ ICI)) + 117\

and making use of the inequality

!lex) + !l(y) :s; n(x + y) :s; n(2x) + !l(2y), for x,y E R,
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we obtain

(9)
sup If(z)1 = sup If(z + 01

1(-zl<4r Izl<4r
.ecn

113

s sup cf(l + Iz + (I)N1 exp(n(f(Y +7])))
Iz/<4r

S Cf sup (1 + Izl + 1(I)N1 exp(n(2fy))exp(n(2f7]))
Izl<4r

1
S cf{l + '(I +4M( 2"log(log(10 + I~I))) + 417]1} NI exp(n(2f7]))

1
exp[n(8fM( 2"log(log(lO + I~I))) + 8fl7]1)]

S cf(l + I~I + 517]1 +4(log(10 + 1~1))1/2)Nl exp(n(2€7]))

1
exp[n(16€M( "2log(log(10 + I~I))))] exp(n(16f7J))

S c~(1 + 1~I)Nl (1 + 17JI)N1 exp(n(18€7J)) exp(16fn((log(10 + kl))1/2))

S c~(1 + 1~I)Nl(l + 17JI)N1 exp(n(18f7J))

exp[16f{(log(10 + 1~1))1/2 + 1} log«log(10 + 1~/))1/2 + 1)]

S c~'(l + 1~/)Nl(l + ITJj)N1 exp(n(18fTJ))exp(48dog(10 + '~j))

= c~(1 + 1~I)Nl+48f(1 + ITJI)N1 exp(n(18fTJ)).

On the other hand, there exist Co and No such that

(10)

sup If(z)1 = sup If(z + 01 ~ sup If(z + 01
Iz-(I<r Izl<r Izl:5M(j(log(log(lO+'(I»))
.ecn

> Co
- (1 + 1~I)No

by the condition (2).

Applying now to the functions ?/J, f and?/J /'1' = cj; Hormander's lemma
with T given by (8) and making use of the estimates (9) and (10), we
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obtain
(11)
I<p«)I :::; cl'(l + 1~I)Nd-48f+2N°(1 + 1"1I)NI exp(O(18f"1» sup I~(z + ()I,

Izl<4r

where Cl' is another constant depending on f. But for any integer 1> 0
and all z = x + iy E en with lzl < 4r, we have, in view of (5),

(12)

ItP(z + ()l :::; (1 + lz + (1)-1 exp(n(~(y + "1»)WI(~)
I I 2 2 A

:::; (1 + I~I)- (1 + IzD exp(!l(7"1»exp(GCTy»wI(t/J)

1 2
:::; (1 + 1(1)-1[1 + 4M(2"log(log(lO + leD» + 41"11]' exp(n( 7"1»

8 1 8 A

exp(GCTM (2"log(log(10 + leD» + 7 1"1 DW1( t/J)

2
:::; (1 + leD-1(1 + I"1D '(l + 41"11 + 4(log(10 + leD)1/2)' exp(O(7"1»

16 8
exp(G(-1"1»exp[7{log(1O + I~D)1/2 + I} log«log(lO + le1))1/2 + l)wI(

18
:::; cl(l + leD-1(1 + I"1D '(l + 1"11)'(1 + leD2/1exp(G(-1"1»

24 A

exP(-1 log(lO + lel»Wl( t/J)

:::; c~(1 + leD-1+t+lf(1 + 1"11)21 exp(O( \8 "1)Wl(tP),

where Cl and c~ axe constants depending only on I. Consequently from
(11) and (12) it follows that

Wk(<P) = S~P(l + 1(l)k exp(-G(~»I<p«)1

:::; c
l'
,l(1 + leD-!+¥+N1 +48f+2No+k(1 + 1"11)k+2l+N1

18 "1 A

exp(G(18f"1) + n( T"1) - G( 'k»WI(t/J)
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For a given k, taking € and 1 such that -~ + 2t +N1 +48€+2No+ k < °
and i - 18€ - \8 > 0, we have

where 1
1

= i - 18€ - 1/8. Since the quantity in (13)

is bounded as 1771 -+ 00, we can conclude that

for some c independent of ep. This proves the continuity of the mapping
Tep -+ ep and thus completes the proof.

Proof of the theorem 2. We are going to prove the following statement
which is stronger than that of the theorem: There exist positive constants
B, C, N such that

(14)
A C

sup IS(z +01 > N
Izl~M( t !og(10+IW) - (1 + I~I)

for all ~ E Rn with 1~1 ~ B.
Suppose that (14) does not hold. Then there exist a sequence {ej} in

Rn such that I~j I -+ 00 as j -+ 00, and

(15)

Choose <p E Ke such that <p ~ 0, sUpp<p C B(O,I) and ep(O) = 1. By
means of 'P, we define a sequence 'Pj(x) of functions as ei<X,ei><p(x).

Then 'Pjs are in K e , supported in B(O, 1) and epj(~j) = ep(O) = 1. Since
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S * K:~ = K:~, there exists a distribution E E K:~ such that S * E = 6.
Therefore we have

Icpj(x)1 = I< S*E,Tx<h > I
= I< E,S*Tx<Pj > I

A -

= I< E,T_x(S *CPj) > I·

From the continuity of E E K~, there exist C and k such that

(16)

Icpj(x)l:5 CWk(T-x-CS;-CPj» = CWk(S«()c,Oj«()ei<x,(»

= C sup (1 + 1(l)ke-O(t)IS(Ollc,Oj{()lIei<x,(>I
(=e+i"EC"

= C sup (1 + /(l)ke-O(f)IS«()IIc,Oj«()llei<x'(>1
I(-~j I::::;M( llog(IO+I{; I»

+ C sup (1 + 1(\)ke-O(t)IS«()llc,Oj«()llei<x'(>1
I(-~j I> M(llog(IO+ I{; D)

Using the estimate of the form (5) for f < *and N > k, the first term
in (16) can be estimated as follows;

(17)
sup (1 + \(l)ke-O(i")IS(Ollc,Oj«()lIei<x'(>1

I(-~j I::::;M( t log(IO+I~j I»

:5 Cl sup (1 + 1(l)ke-O(r)IS«()I(l + 1(I)-NeO(E'1)e-<X,'1>
I(-~j I::::;M(! log(IO+I~j I»

:5 Cl sup IS(Ole-O(rHO(E'1H/'11
I(-{; I::::;M( llog(IO+I~j I))

:5c; sup IS«(+ej)1
I(I::::;M( t log(IO+I~j I»

C'< 1
- (1 + lejl) ,

where we used that -neV + n(f17) + 1171 is bounded in Rn and CPj is
supported in the unit ball. In view of the estimate (6) with f < *and
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the estimate (5) with €1 < t - € and NI sufficiently large, we estimate
the second term in (16) as follows;

(18)
sup (1 + 1(l)ke-O(i)IS(Ollcpj«()lIei<z'<:>1

I<:-~ I>M( t log(10+1~ I»

sup (1 +1(l)ke-O(i)IS«()/Icp«( - ej)/Iei<z,<:>/
I<:-~ I>M( ~ log(10+1~ I»

~ C2 sup (1 + 1(I)k+N(l + I( - ejl)-Nel'lI-O(fHO(f'lHO(f1'l)
I'-~j I>M( t log(10+1~ I))

~ C2 sup (1 + lej I)k+N (1 + I( - ej I)HN-NI el'll-O«t -f-fd'l
I'-~j I>M( t(log(IO+I~j I»

~ c2(1 + lejl)k+N(1 + M( ~ log(lO + lejl))k+N-N1 el'll-O«t-f-fd'l)

~ c;(1 + lejl)k+N(l + lejl)!(HN-Nd

~ c;(l + lej 1)!(k+N)-tN1 ,

where we used the estimate of the form (5) with €1 < t - € and NI >
3(k+N), el'lI-O«t-fl - f)'1) being bounded in Rn and M(! log(lO+lel)) >
HlO + leI)1/2.

Substituting the estimates (17), (18) into (16), we have I<r'j(x)/ ~

c(1 + lejl)-m for some positive integer m and constant c independent on
j. But

1 = ep(O) = epj(ej) ~ [__ Icpj(x )Idx ~ c(l + lejl)-mvol(B(O, 1»18 (0,1)

for each j = 1,2,···. This inequality does not hold for j -+ 00, which
provides a contradiction.
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