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F-RATIONALITY OVER A QUOTIENT

RING OF A C-M LOCAL RING

YONG Su SHIN AND YOUNG HYUN CHO

o. Introduction

Throughout this paper all rings are commutative, Noetherian and
characteristic p unless otherwise specified.

In [2], R. Fedder and K. Watanabe proved that if R is a F-rational
ring which can be represented as the quotient of a Cohen-Macaulay (for
short, C-M) ring, then R is normal and C-M.

In this paper, we shall prove that if R is C-M and if there exists
a system of parameters ideal which is tightly closed, then every ideal
generated by part of a system of parameters is tightly closed in Theorem
2.2 and if R is an equidimensional ring with dimR = d which can be
represented as the quotient of C-M (respectively, Gorenstein) local ring
and if there exists a system of parameters ideal which is tightly closed,
then R is C-M (respectively, Gorenstein) and nonnal in Theorem 3.3.
Thus we see that if R is as in Theorem 3.3, then every ideal generated
by part of a system of parameters is tightly closed by Theorem 2.2.

1. Preliminaries and Definitions

DEFINITION 1.1. (Hochster-Huneke) Let I ~ R be an ideal. If R is a
ring with characteristic p > 0, we say that x E R is in the tight closure,
[*, of I, if there exists c E RO such that for all e ~ 0, cxpe

E I[pe), where
RO = R\ U{P : P is a minimal prime ideal in R} and I[q) = (iq : i E I)
when q = pe. If I = 1*, we say that I is tightly closed.

REMARK 1.2. If R is regular, then 1= [* for all 1. (re£., [3], [4], [5],
[6]).
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DEFINITION 1.3. (Hochster-Huneke) R is weakly F-regular if every
ideal in R is tightly closed. R is F-regular if Rp is weakly F-regular
for every p E Spec(R).

DEFINITION 1.4. (Fedder-Watanabe) R is F-rational if every ideal
generated by a system of parameters is tightly closed.

Let R be a ring and I C R be an ideal. For an R-module M, define

fI(M) == {m E M I rad(Ann m) ;2 I}

== {m E M I There exists a positive integer

n == n(m) such that In. m = O}

~ lim HomR(R/In
, M).

--+

IT 1== (l1l ... ,fr), then fI(M) ~lim HomR(R/(lf, ... ,f~), M). (ref.
--+

Bemerkung 4.2 in [1].)

DEFINITION 1.5. H}(.) denotes the right derived functor of f I (·) of
dimension i. We call H}(M) the i-th dimensional local cohomology
of M with respect to I,

i.e., HHM)~lim Extk(R/(ff, ... ,f~),M)
--+

LEMMA 1.6. Let (R, m) be a C-M local ring, Xl,··· , Xd be a system
ofparameters for R and let Ji == (Xb··· ,Xi) for every i. Then H~;(R) ==
limR/(xj,··· ,xf).
--+

n

Proof. We will use induction on dimR = d. Assume that dimR == 1.
By Definition 1.5,

H~(R) = limExtMR/(x~),R),
--+

where Xl is a system of parameter of R. Since

xR
1

0--+ R --+ R --+ R/x~R --+ 0
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is exact, we obtain an exact sequence

ZR
1o----+ HomR(R/x~ R, R) ----+ HomR(R, R) ----+

HomR(R, R) ----+ Extk{R/x~ R, R) ----+ 0
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ZR

and so 0 ----+ R~ R ----+ Extk(R/xfR,R) --+ 0 is exact. This means
that Extk(R/xfR,R) ~ R/xfR. Thus

H~(R) = 1imExtk(R/x~R,R) = 1imR/x~R.
--+ --+

Now assume that dimR = d ~ 2. Let R/(xf,'" ,xf) = Ri.

• j ( ) {O, j :f. iClaim: Ext R Ri,R = ..,
Ri, Z = J for J ~ 1.

x R

Proof of Claim. For i = 1, since 0 ----+ R ~ R ----+ RI ----+ 0 is exact,
we see that

xR
1

0----+ HomR(Rll R) ----+ HomR(R, R) ----+

HomR(R,R) ----+ Extk(Rll R) ----+ Extk{R,R) =0

ZR

is exact. So 0 ----+ R~ R ----+ Extk(Rll R) --t 0 is exact. It follows
. 1 .

that Extk(Rll R) ~ RI and 0 = Ext1z- (R,R) ----+ Ext~(RbR) --t

Ext~(R,R) = 0 is exact for j > 1, i.e., Ext~(RbR) = 0 for j > l.
x~

For every i > 1, 0 -- Ri-I -:... Ri-I --+ Ri ----+ 0 is exact. Thus by
induction

o= Ext~2(Ri_I,R) ----+ Ext~I(Ri,R) ----+ Ext~I(Ri_llR) ~
Ext~I(Ri_I, R) ---+ Exth(Ri, R) ---+ Exth(Ri-ll R) = 0

is exact. Thus we can obtain an exact sequence,

o---+ Ext~I(Ri,R)---t Ext~I(Ri_I,R)~
Ext~I(Ri_llR)----+ Exth(Ri,R) ----+ O.
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Hence the following sequence

is exact. So we see that

Similarly, Ext~(Ri'R) = 0 for j =1= i. Therefore for every n > 1 and
i ~ 1,

Extk(R/(x~, ... ,xi),R) '::!. R/(x~, ... ,xi)

whence
H~i(R) = ~R/(xf,'" ,xi),

as desired.

LEMMA 1.7 ([4] (5.10) COROLLARY). Let R be a Noetherian ring
such that no prime is both minimal and maximal. If every principal
ideal of height one is tightly closed, then R is normal.

2. F-rationality over C-M Local Ring

Let R be a ring of characteristic p. Denote by eR, the ring R viewed as
an R-module via the etk power of the Frobenius map. Furthermore, for
any R-module M, we denote by eM the module M0R eR. Note that if R

Fe
is reduced and q = pe, there is a natural identification of maps R ---+ eR

1 .

with R C Ri and with Rq C R where Rn denotes the ring {xn I x E R}
for n = q or ~.

The proof of the following Proposition 2.1 is along the lines of the
proof of the Proposition 2.2 in [2].

PROPOSITION 2.1. Let x 17 ••• ,x i be a part ofsome system ofparam­
eters for a C-M local ring (R, m) and let Ji = (Xl, ... ,xi). If for every
o =1= Tf E H~i(R), ne>O(O:R Fe(Tf» C R \ RO, then Ji is tightly closed.
In particular, if i = d, then the converse holds.
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THEOREM 2.2. Let (R,m) be a C-M local ring. If there exists a
system of parameters ideal which is tightly closed, then every ideal gen­
erated by part of a system of parameters for R is tightly closed.

Proof. We first note that R is F-rational by Proposition 2.1 since
R is C-M. Let Xl,··· , Xd be a system of parameters for R and Ji ==
(x},··· , Xi) for every i. In particular, we denote Jd- l by J. Assume 0 =I
1] E H~-I(R) and ne>o(O =R Fe(1])) 1-R \ RO. Let f E R/(xf,··· ,xd- l )
represent an element 1] of H~-I(R). Since ne>o(O :R Fe(1])) (j.R \ RO,
there exists an element c E RO such that cif E (x~, ... ,xd_l)[f] C

"(xf,··· ,x:D[q] for all q == pe > o. Hence I E (xf,··· ,xd- l )* C
(xi,··· , x:I)* = (xi,··· , x:I) since R is F-rational. Thus we can ob­
tain an element g E (x:;) such that f = 9 E Rf(xf,··· ,xd_l) repre­
sents an element 1] E H~-I(R). Let g = alx:I where al E R. Then
egq = e(alx:I)q E (xi,··· ,x:I-I)[q] for every q = pe > o. So ea~ E

(xi,··· ,x:l-l)[q] C (xi,··· ,x:l)[q] for every q == pe> 0, i.e., al E
(xf,··· ,x:';)* == (xi,··· ,x:.;) since R is F-rational. Hence there exist el­
ementSQI,··· ,Qd-l,a2 E Rsuchthatal ==alxi+···+ad-I x:';_I+a2x:l.
Let h = a2X~n. Then f == 9 = Tt = a2X~n E Rf(xi,··· ,xd-l). Induc­
tively, we can see that f is divided by xd in Rf(xf,··· ,xd-l) infinitely
many times. It follows that f = 0 in Rf(xi,··· ,x:';_l)' a contradiction.
This means that for every 0 =11] E H~-I(R), ne>O(O :R Fe(1])) C R\Ro.
Thus J* = J by Proposition 2.1. By the similar method, we can prove
that Ji == Je for every i. Therefore, every ideal generated by part of a
system of parameters is tightly closed.

REMARK 2.3. Let (R, m) be a commutative Noetherian local ring of
positive prime characteristic p with 1. It is worth noting that if R is F­
rational, then every ideal generated by part of some system of parameters
for R is tightly closed. And also, by Lemma 1.7, R is normal.

3. A Quotient Ring of a C-M Local Ring

LEMMA 3.1 ([3] LEMMA 3.2). Let R == 8f1 where 8 is a C-M local
ring and assume R is equidimensional. Let {Ql, ... ,Qn} be the minimal
primes over I. Assume that x},··· , Xd are parameters of R. Then there
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exist elements Zh" . ,Zh in I and YI,'" ,Yd such that the Yi lift Xi,

the z's and y's together form a regular sequence, and there exists a
c rt Ui=IQi and an integer q = pe such that cI[q) c (Zll'" ,Zh), where
htI = h.

THEOREM 3.2 ([3] THEOREM 3.3). Let R = 51I beequidimensional,
where 5 is a C-M local ring. Assume that Char(R) = p > O. Let
Xl, ••• ,Xn be elements of R which are part of a system of parameters.
Let J = (Xh'" ,xn-I)R. Then J: RXn C r.

THEOREM 3.3. Let R = 51I be equidimensional, where S is a e-M
(respectively, Gorenstein) local ring. H there exists a system of param­
eters Xl, •• , ,Xd in R such that the ideal J generated by this system of
parameters is tightly closed, then R is C-M (respectively, Gorenstein)
and normal. In particular, if dimR=l, then R is regular.

Proof. Since S is C-M (respectively, Gorenstein), I will contain an
S-sequence Zh'" ,Zh of length ht!. Let 5 = 51(zI,'" ,Zh) and 1 =
II(zl,'" ,Zh). Then R = SII ~ 511. Since 5 is C-M (respectively,
Gorenstein), S is also C-M (respectively, Gorenstein). Hence we can
assume that ht! = O. Thus for every c E 5°, the image cin R is contained
in RO. By Lemma 3.1, there exist elements YI, . .. ,Yd in 5 such that the
image fh of Yi in R is equal to Xi for every i = 1"" ,d and YI,'" ,Yd
is an S-sequence. By hypothesis, the ideal J = (Xl,'" ,Xd) is tightly
closed in R. Thus, the ideal generated by YI,'" ,Yd is tightly closed in
S by Lemma (4.11) (b) in [4]. Hence S is F-rational by Proposition 2.1
since S is C-M. It follows that 5 is normal by Remark 2.3 and so 5 is
a domain. This means that 1= 0 since htI = O. Thus R = S, i.e., R is
C-M (respectively, Gorenstein) and normal.

REMARK 3.4. Let R be an equidimensional ring which is the homo­
morphic image of a Gorenstein local ring with 1. If there exists a system
of parameters ideal which is tightly closed, then R is Gorenstein by The­
orem 3.3. Hence R is strongly F-regular by Proposition 5.1 in [3] and
(3.1) Theorem f) in [5].
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