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ON THE HARDY-STEIN IDENTITY

E. G. Kwon

1. Result

Our motivation is the following theorem appeared at [3 Theorem 2.1].

THEOREM A. Let 0 < p<2 andlet 0 < a < p < co. Then there is
a positive constiant C = C(p, ) such that

1

lZl)"‘_lda:dy

M Igcra | /U P17 (2)|(log

for all holomorphic f in U with f(0) =0.

Here z = z + 4y, U is the unit disc in the complex plane and ||f||,
denotes the H? norm of f(z) [1]. If @ = 2 then (1) follows directly from
the Hardy-Stein identity [4] :
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In the proof of Theorem A, p > a was used for the verification that
[fIP~%|f|* is subharmonic. It is natural to consider the right handside
integral of (1) for p < a and to ask whether (1) holds at this time also.
This note is devoted to this question.

THEOREM. If 0 < @ £ 2 and 1 < p < oo, then (1) holds for all f
holomorphic in U with f(0) = 0.
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2. Proof of theorem

In view of Theorem A, we may assume p < a. Fixpand a : 1 <
p < 00,1 <a<2 Let gand f be the conjugate exponents of p and a,
respectively. Let f be holomorphic in U with f(0) =0 and let ¢ € HY.
Consider
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where h(z) = [f(2)]“P¥~D. I we denote M,k the radial maximal

function of h.(2) = h(rz) : M,h(8) = sup |h(rpe‘?)], the integral () is
0<p<1
majorized by
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Applying Holder’s inequality, this is at most
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Here the first factor is, by the complex maximal theorem [1 Theorem
1.9], at most a constant times || fr||;+’3—ﬂ”. While the second factor of
(2) is, after changing variables, at most a constant times

[/"2” {/01 9o ™)1 ~ p)ﬂ*ldp}q/ﬂ dal N ,

which is magjorized by C(p,8) |lg-||? [2]. Hence we can conclude

(3) (x) < Clp, ) f BT P29, 15

Now we will use a duality argument to prove (1). If follows easily
from the Green’s theorem that

fatreyo = [ [ fi()tog
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Thus by Hélder’s inequality,
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Therefore, applying (3), we obtain
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6 = —1 —p+ p/B. Since (4) holds for any ¢(z) € HI(U), we conclude
that

[ / / v Lf(2)IP7%|f'(2)|*(log _:_)a_l d:cdyJ 1/,,,

1£.2 < C(p,a) / / )P )1 tog ) dady.

Letting r — 1, we arrive at the desired (1).

If 0 < a £ 1 then (1) follows from what we have just proved: apply
Holder’s inequality to the Hardy-Stein identity, then use (1) for 1 < & <
2.
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