ON THE HARDY-STEIN IDENTITY

E. G. Kwon

1. Result

Our motivation is the following theorem appeared at [3 Theorem 2.1].

THEOREM A. Let $0 and let <math>0 < \alpha \le p < \infty$. Then there is a positive constiant $C = C(p, \alpha)$ such that

(1)
$$||f||_p^p \le C(p,\alpha) \int \int_U |f(z)|^{p-\alpha} |f'(z)|^{\alpha} (\log \frac{1}{|z|})^{\alpha-1} dx dy$$

for all holomorphic f in U with f(0) = 0.

Here z = x + iy, U is the unit disc in the complex plane and $||f||_p$ denotes the H^p norm of f(z) [1]. If $\alpha = 2$ then (1) follows directly from the Hardy-Stein identity [4]:

$$r\frac{d}{dr}I_{p}(r,f) = \frac{p^{2}}{2\pi} \int_{0}^{r} \rho d\rho \int_{0}^{2\pi} |f(\rho e^{i\theta})|^{p-2} |f'(\rho e^{i\theta})|^{2} d\theta, 0 \le r < 1,$$

where

$$I_p(r,f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta.$$

In the proof of Theorem $A, p \geq \alpha$ was used for the verification that $|f|^{p-\alpha}|f|^{\alpha}$ is subharmonic. It is natural to consider the right handside integral of (1) for $p < \alpha$ and to ask whether (1) holds at this time also. This note is devoted to this question.

THEOREM. If $0 < \alpha \le 2$ and 1 , then (1) holds for all <math>f holomorphic in U with f(0) = 0.

Received January 11, 1991.

Research partially supported by KOSEF.

98 E. G. Kwon

2. Proof of theorem

In view of Theorem A, we may assume $p < \alpha$. Fix p and $\alpha : 1 . Let <math>q$ and β be the conjugate exponents of p and α , respectively. Let f be holomorphic in U with f(0) = 0 and let $g \in H^q$. Consider

$$(*) = \int \int_{rU} h(z)|g'(z)|^{\beta} (\log \frac{r}{|z|})^{\beta-1} dx dy,$$

where $h(z) = |f(z)|^{(\alpha-p)(\beta-1)}$. If we denote $M_r h$ the radial maximal function of $h_r(z) = h(rz) : M_r h(\theta) = \sup_{0 \le \rho < 1} |h(r\rho e^{i\theta})|$, the integral (*) is majorized by

$$\int_0^{2\pi} M_r h(\theta) \int_0^r |g'(\rho e^{i\theta})|^{\beta} (\log \frac{r}{\rho})^{\beta-1} \rho d\rho d\theta.$$

Applying Hölder's inequality, this is at most

(2)
$$\left[\int_0^{2\pi} M_r h(\theta)^{q/(q-\beta)} d\theta \right]^{q-\beta/q} X$$

$$\left[\int_0^{2\pi} \{ \int_0^r |g'(\rho e^{i\theta})|^{\beta} (\log \frac{r}{\rho})^{\beta-1} \rho d\rho \}^{q/\beta} d\theta \right]^{\beta/q} .$$

Here the first factor is, by the complex maximal theorem [1 Theorem 1.9], at most a constant times $||f_r||_p^{p+\beta-\beta p}$. While the second factor of (2) is, after changing variables, at most a constant times

$$\left[\int_0^{2\pi} \left\{\int_0^1 |g_r'(\rho e^{i\theta})|^\beta (1-\rho)^{\beta-1} d\rho\right\}^{q/\beta} d\theta\right]^{\beta/q},$$

which is magjorized by $C(p,\beta) \|g_r\|_q^{\beta}$ [2]. Hence we can conclude

(3)
$$(*) \le C(p,\alpha) \|f_r\|_p^{p+\beta-\beta p} \|g_r\|_q^{\beta}.$$

Now we will use a duality argument to prove (1). If follows easily from the Green's theorem that

$$\int_0^{2\pi} f \bar{g}(re^{i\theta}) d\theta = \int \int_{rU} f' \bar{g'}(z) \log \frac{r}{|z|} dx dy.$$

Thus by Hölder's inequality,

$$\left| \int_0^{2\pi} f \bar{g}(re^{i\theta}) d\theta \right| \le (*)^{1/\beta} X$$

$$\left[\int \int_{rU} |f(z)|^{p-\alpha} |f'(z)|^{\alpha} (\log \frac{r}{|z|}) dx dy \right]^{1/\alpha}.$$

Therefore, applying (3), we obtain

$$(4) \qquad \left| \int_0^{2\pi} f \bar{g}(re^{i\theta}) d\theta \right| \leq C(p,\alpha) \|f_r\|_p^{\delta} \|g_r\|_q X \\ \left[\int \int_{rU} |f(z)|^{p-\alpha} |f'(z)|^{\alpha} (\log \frac{r}{|z|})^{\alpha-1} dx dy \right]^{1/\alpha},$$

 $\delta = -1 - p + p/\beta$. Since (4) holds for any $g(z) \in H^q(U)$, we conclude that

$$||f_r||_p^p \le C(p,\alpha) \int \int_{rU} |f(z)|^{p-\alpha} |f'(z)|^{\alpha} (\log \frac{r}{|z|})^{\alpha-1} dx dy.$$

Letting $r \to 1$, we arrive at the desired (1).

If $0 < \alpha \le 1$ then (1) follows from what we have just proved: apply Hölder's inequality to the Hardy-Stein identity, then use (1) for $1 < \alpha \le 2$.

References

- 1. P.L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- 2. T.M. Flett, Mean values of power series Pacific, J. Math. 25 (1968), 463-494.
- 3. H.O. Kim and E.G. Kwon, Weighted subspaces of Hardy spaces, Canadian J. Math. XL (5) (1988), 1074-1083.
- 4. P. Stein, On a theorm of M Riesz, J. London Math. Soc. 8 (1933), 242-247.

Department of Mathematics Education Andong National University Andong 760-749, Korea