## ON A STRUCTURE $\phi$ SATISFYING $(\phi^2 + 1)(\phi^2 + a) = 0$

### JONG-IK HYUN

In [4], Yano, Houh and Chen have consider the structure defined by a tensor field  $\phi$  of type (1,1) satisfying  $\phi^4 + \phi^2 = 0$  or  $\phi^4 - \phi^2 = 0$ , respectively, and they studied the existence of those structures. In [2], Nikić is introduces the  $\phi(-1, -a)$ -structure satisfying  $(\phi^2 - 1)(\phi^2 - a) = 0$ . In this paper, we want to consider the structure defined by a tensor field  $\phi$  of type (1,1) satisfying  $(\phi^2 + 1)(\phi^2 + a) = 0$ . Moreover, we consider the generalization of the above structure which satisfies the equation;

$$(\phi^2 + a_1)(\phi^2 + a_2)\cdots(\phi^2 + a_k) = 0,$$

where  $a_1, a_2, \cdots, a_k$  are distinct real numbers.

### I. Perliminaries

Let M be an n-dimensional differentiable manifold with  $(f, U, V, u, v, \lambda)$ -structure. Then there exist a tensor field f of type (1,1) on M, vector fields U and V, 1-forms u and v, and a function  $\lambda$  such that

$$f^{2} = -1 + u \otimes U + v \otimes V,$$

$$fU = -\lambda V, \quad fV = \lambda U,$$

$$u \circ f = \lambda v, \quad v \circ f = -\lambda u,$$

$$u(U) = v(V) = 1 - \lambda^{2},$$

$$u(V) = v(U) = 0.$$

Applying f to the first equation of (1.1), we get

$$(1.2) f3 + f = \lambda(-u \otimes V + v \otimes U).$$

Received October 5,1990. Revised March 10, 1991.

If  $\lambda \neq 0$ , then the  $(f, U, V, u, v, \lambda)$ -structure is not an f-structure defined by Yano [3]. Again, applying f to (1.2) and making use of (1.1), we get

(1.3) 
$$(f^2+1)(f^2+\lambda^2)=0.$$

Then the  $(f, U, V, u, v, \lambda)$ -structure is not a  $\phi(-1, -a)$ -structure defined by Nikic' [2].

### II. Matric $\phi(1,a)$ -structure

Let  $M^n$  be an *n*-dimensional differentiable manifold of class  $C^{\infty}$  and let there be given a tensor field  $\phi$  of type (1.1) and of class  $c^{\infty}$  such that

(2.1) 
$$(\phi^2 + 1)(\phi^2 + a) = 0, \quad a \in \mathbb{R}^+, a \neq 1.$$

For a differentiable manifold with a structure which satisfies the equation (2.1), we say that it admits a  $\phi(1,a)$ -structure. Let

(2.2) 
$$l = \frac{(\phi^2 + a)}{(a-1)}, \quad m = \frac{(\phi^2 + 1)}{(1-a)},$$

then we have

$$l+m=1$$
,  $l^2=l$ ,  $m^2=m$ ,  $lm=ml=0$ .

Thus the operators l and m applied to the tangent space at a point of  $M^n$  are complementary projection operators. Let L and M be the complementary distributions corresponding to the operators l and m respectively.

From (2.2) we get

(2.3) 
$$\phi^{2}l = -l, \quad \phi^{2}m = -am \text{ and } f = l - m = \frac{(2\phi^{2} + a + 1)}{(a - 1)}.$$

Then it clear that  $f \neq 1$ ,  $f^2 = 1$  and the manifold  $M^n$  admits an almost product structure f.

THEOREM 2.1. A differentiable manifold  $M^n$  with  $\phi(1,a)$ -structure is of even dimensional.

*Proof.* Let p be a point of  $M^n$ . Then we have from (2.3)

$$\phi^2 X = -X, \quad X \in L_p,$$

which shows that  $\phi$  is an almost complex structure in the subspace  $L_p$  of  $T_p(M^n)$  at p and  $L_p$  is of even dimensional, where we put dim  $L_p = 2k$ .

From the second equation of (2.3), we get

$$\phi^2 X = -aX, \quad X \in M_p,$$

which shows that  $\phi' = \frac{\phi}{\sqrt{a}}$  is an almost complex structure in the subspace  $M_p$  of  $T_p(M^n)$  at p and  $M_p$  is of even dimensional. Thus  $T_p(M^n)$  is of even dimensional, where we put n = 2m.

We now introduce a local coordinate system in the manifold  $M^n$  and denote by  $\phi_j^i, l_j^i, m_j^i$  the local components of the tensors  $\phi, l, m$ , respectively. We also introduce a positive definite Riemannian metric g in  $M^n$  and take 2k mutually orthogonal unit vectors  $u_a^h(a, b, c, \cdots = 1, 2, \cdots, 2k)$  in L and 2(m-k) mutually orthogonal unit vectors  $u_A^h(a, b, c, \cdots = 2k+1, \cdots, 2m)$  in M.

Then we have

$$(2.4) l_i^h u_a^i = u_a^h, l_i^h u_A^i = 0, m_i^h u_a^i = 0, m_i^h u_A^i = u_A^h.$$

If we denote by  $(v_i^a, v_i^A)$  the matrix inverse to  $(u_b^j, u_B^j)$ , then both  $v_i^a$  and  $v_i^A$  are components of linearly independent covarient vectors and satisfy the relations

(2.5) 
$$v_i^a u_b^i = \delta_b^a, \quad v_i^a u_B^i = 0, \quad v_i^A u_b^i = 0, \quad v_i^A u_B^i = \delta_B^A,$$

$$(2.6) v_i^a u_a^h + v_i^A u_A^h = \delta_i^h.$$

If we put

(2.7) 
$$h_{ji} = v_j^a v_i^a + v_j^A v_i^A,$$

then  $h_{ji}$  is a globally well-defined positive definite Reimannian metric with respect to which  $(v_b^h, v_B^h)$  form an orthogonal frame such that  $v_j^a = h_{ji}u_a^i, v_i^A = h_{ji}u_A^i$ .

From (2.4) and (2.5), we get

(2.8) 
$$l_j^h v_h^a = v_j^a$$
,  $l_j^h v_h^A = 0$ ,  $m_j^h v_h^a = 0$ ,  $m_j^h v_h^A = v_j^A$ .

On the other hand, from the first equation of (2.4), we get

$$l_j^h v_i^a u_a^j = v_i^a u_a^h, \quad l_j^h \left( \delta_i^j - v_i^A u_A^j \right) = v_i^a u_a^h,$$

from which

$$(2.9) l_i^h = v_i^a u_a^h.$$

Similarly we get

$$m_i^h = v_i^A u_A^h.$$

If we put

(2.11) 
$$l_{ji} = l_j^t h_{ti}, \quad m_{ji} = m_j^t h_{ti}$$

We find from (2.7),(2.9) and (2.10)

(2.12) 
$$l_{ji} = v_j^a v_i^a, \quad m_{ji} = v_j^A v_i^A$$

(2.13) 
$$l_{ji} = l_{ij}, \quad m_{ji} = m_{ij}, \quad l_{ij} + m_{ji} = h_{ji}.$$

We can easily verify the following relations:

(2.14) 
$$l_{j}^{t} l_{i}^{s} h_{ts} = l_{ji}, \quad l_{j}^{t} m_{i}^{s} h_{ts} = 0, \\ m_{i}^{t} m_{i}^{s} h_{ts} = m_{ji}.$$

For any vectors X and Y with components  $X^{i}, Y^{i}$  let us put

(2.15) 
$$m^*(X,Y) = m_{ts}X^tY^s, \quad h(X,Y) = h_{ts}X^tY^s, \\ g(X,Y) = \frac{1}{2}[h(X,Y) + h(\phi X, \phi Y) + (a-1)m^*(X,Y)].$$

Then we have

$$h(u_a, u_A) = m^*(u_a, u_A) = 0, \quad g(u_a, u_A) = 0.$$

Then the distributions L and M are orthogonal with respect to the metric g. It is easy to verify by using (2.10) and (2.13) that

$$m^*(u_a, u_b) = m^*(\phi u_a, \phi u_b) = 0,$$
  
 $h(\phi^2 u_a, \phi^2 u_b) = h(u_a, u_b).$ 

These equations lead to the following:

$$(2.16) g(\phi X, \phi Y) = g(X, Y) \quad X, Y \in L.$$

Next, for any vector fields  $u_A$  and  $u_B$  in M, we have from (2.10) and (2.13)

$$h(u_A, u_B) = m^*(u_A, u_B)$$
  
 $h(\phi u_A, \phi u_B) = m^*(\phi u_A, \phi u_B),$   
 $h(\phi^2 u_A, \phi^2 u_B) = h(-au_A, -au_B) = a^2 m^*(u_A, u_B).$ 

These equations lead to the following:

$$(2.17) g(\phi X, \phi Y) = ag(X, Y), \quad X, Y \in M.$$

Thus we have

THEOREM 2.2. Let  $M^n$  be an n-dimensional manifold with  $\phi(1,a)$ structure. Then there exists a positive definite Riemannian metric gwith respect to which L and M are mutually orthogonal and such that
(2.16) and (2.17) hold.

For any vector fields X and Y in  $M^n$ , from (2.16) and (2.17) we get

$$g(\phi X, \phi Y) = g(\phi lX + \phi mX, \phi lY + \phi mY)$$
$$= g(lX, lY) + ag(mX, mY),$$

from which

(2.18) 
$$g(\phi X, \phi Y) = g(X, Y) + (a-1)g(mX, mY),$$

Thus we have

THEOREM 2.3. Let  $M^n$  be an n-dimensional manifold with  $\phi(1,a)$ structure. Then there exists a positive definite Riemannian metric gsuch that

$$g(\phi X, \phi Y) = g(X, Y) + (a - 1)g(mX, mY)$$

for any vector fields X and Y on  $M^n$ .

Next, from (2.18) we get

$$g(\phi X, Y) = g(\phi^2 X, \phi Y) + (1 - a)(m\phi X, mY)$$

$$= g(-X + (1 - a)mX, \phi Y) + (1 - a)g(\phi X, mY)$$

$$= -g(X, \phi Y) + (1 - a)g(mX, \phi Y) + (1 - a)g(\phi X, mY).$$

Replacing Y by mY in the last equation, we get

$$g(\phi X, mY) + g(mX, \phi Y) = 0$$

by virtue of  $a \in \mathbb{R}^+$ . Then we have

$$(2.19) g(\phi X, Y) = -g(X, \phi Y).$$

Let  $\omega$  be a tensor field of type (0,2) of  $M^n$  defined by

$$\omega(X,Y) = g(\phi X,Y)$$

for any vector fields X and Y of  $M^n$ , the we have

(2.20) 
$$\omega(X,Y) = -\omega(Y,X),$$

that is,  $\omega$  is a 2-form.

# III. Structure group of $\phi(1, a)$ -structure

Take a vector e in the distribution L, then the vector  $\phi e$  is also in L and perpendicular to e, and moreover  $\phi e$  has the same length as e with respect to g. Consequently we can choose 2k orthonormal basis in L such that

$$e_1, \cdots, e_k, \quad \phi e_1 = \phi e_{k+1}, \cdots, \phi e_k = e_{2k}.$$

Take a vector e in the distribution M, then the vector  $\phi e$  is in M and perpendicular to e. If we put  $\phi = \sqrt{a}\phi'$ , then  $\phi'$  is an almost complex structure on M, and  $\phi e$  has the same length as  $\sqrt{a}e$  with respect to g. Consequently we can choose 2(m-k) orthonormal basis  $\{e_{2k+1}, \dots, e_{2m}\}$  in M such that

$$\phi e_{2k+1} = \sqrt{a}e_{m+k+1}, \cdots, \phi e_{m+k} = \sqrt{a}e_{2m}.$$

Then with respect to the orthonormal basis  $\{e_1, \dots, e_{2m}\}$ , the tensors g and  $\phi$  have the components:

(3.1) 
$$g = \begin{pmatrix} E_k & 0 & 0 & 0 \\ 0 & E_k & 0 & 0 \\ 0 & 0 & E_{m-k} & 0 \\ 0 & 0 & 0 & E_{m-k} \end{pmatrix}$$

$$\phi = \begin{pmatrix} 0 & E_k & 0 & 0 \\ -E_k & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{a}E_{m-k} \\ 0 & 0 & -\sqrt{a}E_{m-k} & 0 \end{pmatrix}$$

We call such a frame an adapted frame of the  $\phi(1,a)$ -structure. Now take another adapted frame  $\{\overline{e}_1,\cdots,\overline{e}_{2m}\}$  with respect to which the metric g and the structure tensor  $\phi$  have the same components as (3.1). If we put

$$\overline{e}_i = T_i^j e_j \quad (1 \le i, j \le n)$$

then we can easily find that the orthogonal matrix T has the form

(3.2) 
$$T = \begin{pmatrix} A_k & B_k & 0 & 0 \\ -B_k & A_k & 0 & 0 \\ 0 & 0 & C_{m-k} & D_{m-k} \\ 0 & 0 & -D_{m-k} & C_{m-k} \end{pmatrix}$$

Thus the structure group of tangent bundle of the manifold  $M^n$  can be reduced to  $U(k) \times U(m-k)$ . Conversely, if the group of tangent bundle of the manifold  $M^n$  can be reduced to  $U(k) \times U(m-k)$ , then we can define a positive definite Riemannian metric g and the tensor  $\phi$  of type

(1.1) as tensor having (3.1) as components with respect to the adapted frames. Then we have

(3.3) 
$$\phi^2 = \begin{pmatrix} -E_k & 0 & 0 & 0 \\ 0 & -E_k & 0 & 0 \\ 0 & 0 & -aE_{m-k} & 0 \\ 0 & 0 & 0 & -aE_{m-k} \end{pmatrix}$$

and it is easily verified that  $(\phi^2 + 1)(\phi^2 + a) = 0$ . From this we have

THEOREM 3.1. A necessary and sufficient condition for an n-dimensional manifold admit a tensor field  $\phi$  of type (1,1) defining a  $\phi(1,a)$ -structure is that the group of tangent bundle of the reduced to the group  $U(k) \times U(m-k)$ .

### IV. Generalization

In this section, we study to generalize the  $\phi(1, a)$ -structure. Let  $M^n$  be a differentiable manifold of class  $C^{\infty}$  and let there be given a tensor field  $\phi$  of type (1,1) such that

$$(4.1) \qquad (\phi^2 + a_1)(\phi^2 + a_2) \cdots (\phi^2 + a_k) = 0$$

where  $a_1, a_2, \dots, a_k$  are distinct positive real numbers. For a manifold  $M^n$  with a structure which satisfies such condition we say that it admits a  $\phi(a_1, a_2, \dots, a_k)$ -structure. Let

(4.2) 
$$l_{i} = t_{i}(\phi^{2} + a_{1}) \cdots (\phi^{2} + a_{i-1})(\phi^{2} + a_{i+1}) \cdots (\phi^{2} + a_{k}),$$
$$(i = 1, 2, \dots, k)$$

where

$$(4.3) t_i = \frac{1}{(a_1 - a_i) \cdots (a_{i-1} - a_i)(a_{i+1} - a_i) \cdots (a_k - a_i)}$$

Then we have

(4.4) 
$$l_i^2 = l_i, \quad l_i l_j = l_j l_i = 0 \quad (i \neq j)$$
$$l_i + l_2 + \dots + l_k = 1$$

From (4.4) we see that the operators  $l_1, l_2 \cdots, l_k$  acting to the tangent space at each point of  $M^n$  are complementary projection operators. Then there exist the complementary distributions  $L_1, L_2, \cdots, L_k$  corresponding to the operators  $l_1, l_2, \cdots, l_k$ , respectively.

THEOREM 4.1. A differentiable manifold  $M^n$  with  $\phi(a_1, a_2, \dots, a_k)$ structure is of even dimensional.

*Proof.* Let p be a point of  $M^n$ . From (4.1) and (4.2) we get

(4.5) 
$$\phi^2 l_i = -a_i l_i \quad (i = 1, 2, \dots, k)$$

If we put  $\phi = \sqrt{a_i}\phi_i$  in the distribution  $L_i$ , then we get  ${\phi_i}^2 = -1$  and there exists an almost complex structure  $\phi_i$  in  $(L_i)_p$ . Thus  $(L_i)_p$  is of even dimensional and denote by dim  $L_i = 2r_i$ . Hence we have

$$n = 2r_1 + 2r_2 + \cdots + 2r_k = 2m$$
.

Next, we can introduce a positive definite Riemannian metric in  $M^n$  with  $\phi(a_1, a_2, \dots, a_k)$ -structure with respect to which  $L_1, L_2, \dots, L_k$  are mutually orthogonal such that

$$(4.6) q(X,Y) = q_1(X,Y) + q_2(X,Y) + \dots + q_k(X,Y),$$

for any vector fields X and Y on  $M^n$ , where we put

(4.7) 
$$g_i(X,Y) = g(l_iX,l_iY), \quad (i=1,2,\cdots k).$$

For any vector fields X and Y on  $M^n$ , we get

$$g(\phi l_i X, \phi l_i Y) = g_i(\phi X, \phi Y) = g_i(\sqrt{a_i}\phi_i X, \sqrt{a_i}\phi_i Y)$$
$$= a_i g_i(\phi_i X, \phi_i Y) = a_i g_i(X, Y),$$

from which

$$(4.8) g_i(\phi X, \phi Y) = a_i g_i(X, Y),$$

(4.9) 
$$g(\phi X, \phi Y) = a_1 g_1(X, Y) + a_2 g_2(X, Y) + \dots + a_k g_k(X, Y).$$

From (4.8) we get

$$a_i g_i(\phi X, Y) = g_i(\phi^2 X, \phi Y)$$
$$= g_i(-a_i X, \phi Y)$$
$$= -a_i g_i(X, \phi Y).$$

Since  $a_i$  is a positive real, we have

$$g_i(\phi X, Y) = -g_i(X, \phi Y),$$

from which

$$(4.10) g(\phi X, Y) = -g(X, \phi Y).$$

THEOREM 4.2. Let  $M^n$  be a manifold with  $\phi(a_1, a_2, \dots, a_k)$  - structure. Then there exists a positive definite Riemannian metric g with respect to which  $L_1, L_2, \dots, L_k$  are mutually orthogonal such that

$$g(\phi X, Y) = -g(X, \phi Y)$$

for any vector fields X and Y on  $M^n$ .

Next, take a vector  $e_i$  in  $L_i$ , then  $\phi e_i$  is also in  $L_i$  and perpendicular to  $e_i$ , and  $\phi e_i$  has the same length as  $\sqrt{a_i}e_i$  with respect to g. Consequently, we can choose  $2r_i (= \dim L_i)$  orthogonal basis  $\{e_{i1}, \dots, e_{i2r_i}\}$  in  $L_i$  such that

$$\phi e_{i1} = \sqrt{a_i} e_{ir_i+1}, \cdots, \phi e_{ir_i} = \sqrt{a_i} e_{2r_i}.$$

Then, with respect to the orthonormal basis  $dsize\{e_{11}, \dots, e_{1r_1}, \dots, e_{k1}, \dots, e_{k2r_k}\}$  the tensor g and  $\phi$  have the components:

$$(4.11) g = \begin{pmatrix} E_{r_1} & 0 & \dots & 0 & 0 \\ 0 & E_{r_1} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & E_{r_k} & 0 \\ 0 & 0 & \dots & 0 & E_{r_k} \end{pmatrix}$$

and

$$\begin{pmatrix}
0 & \sqrt{a_i}E_{r_1} & \dots & 0 & 0 \\
-\sqrt{a_i}E_{r_1} & 0 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & \dots & 0 & \sqrt{a_k}E_{r_k} \\
0 & 0 & \dots & -\sqrt{a_k}E_{r_k} & 0
\end{pmatrix}$$

We call such a frame an adapted frame of  $\phi(a_1, a_2, \dots, a_k)$ -structure. Let  $\{\overline{e}_i\}$  be another adapted frame in which g and  $\phi$  have the same components as (4.11) and (4.12) respectively. Put

$$\overline{e}_i = T_i^j e_i$$

then orthogonal matrix T has the form:

$$(4.13) T = \begin{pmatrix} A_{r_1} & B_{r_1} & \dots & 0 & 0 \\ -B_{r_1} & A_{r_1} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & C_{r_k} & D_{r_k} \\ 0 & 0 & \dots & -D_{r_k} & C_{r_k} \end{pmatrix}$$

Thus the structure group of tangent bundle of the manifold  $M^n$  can be reduced to  $U(r_1) \times U(r_2) \times \cdots \times U(r_k)$ . Conversely, if the structure group of the tangent bundle of the manifold  $M^n$  can be reduced to  $U(r_1) \times U(r_2) \times \cdots \times U(r_k)$ , then we can define a positive definite Riemannian metric g and a  $\phi(a_1, a_2, \cdots, a_k)$ -structrue with matrices (4.11) and (4.12) with respect to the adapted frame. Then we have

$$(4.14) \qquad \phi^2 = \begin{pmatrix} -a_1 E_{r_1} & 0 & \dots & 0 & 0 \\ 0 & -a_1 E_{r_1} & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & -a_k E_{r_k} & 0 \\ 0 & 0 & \dots & 0 & -a_k E_{r_k} \end{pmatrix}$$

and it is easily verified that  $(\phi^2 + a_1)(\phi^2 + a_2) \cdots (\phi^2 + a_k) = 0$ . Thus we have

THEOREM 4.3. A necessary and sufficient condition for an n-dimensional manifold to admit a  $\phi(a_1, a_2, \dots, a_k)$ -structure is that the group of the tangent bundle be reduced the group  $U(r_1) \times U(r_2) \times \cdots U(r_k)$ , where  $n = 2r_1 + 2r_2 + \cdots + 2r_k$ .

EXAMPLE. Let  $CP^{r_i}$  be the complex projective space of  $\dim_C = r_i$ . Then  $M = CP^{r_1} \times \cdots \times CP^{r_k}$  admits a  $\phi(a_1, a_2, \cdots, a_k)$ -structure.

### References

- F.Gouli-Andrew, On a structure defined by a tensor field f of type (1,1) satisfying f<sup>5</sup> + f = 0, Tensor, N.S. 36 (1982), 79-84.
- 2. J.Nikić, On a structure  $\phi$  satisfying  $(\phi^2 1)(\phi^2 a) = 0$ , Tensor, N.S. 39 (1985), 127-131.
- 3. K.Yano, On a structure defined by a tensor field of type (1,1) satisfying  $f^3+f=0$ , Tensor, N.S. 14 (1963), 99-109.

- 4. K.Yano, C.Houl and B.Chen, Structure defined by a tensor field  $\phi$  of type (1,1) satisfying  $\phi^4 \pm \phi^2 = 0$ , Tensor, N.S. 23 (1972)), 81-87.
- 5. K.Yano and M.Okumura, On  $(f, g, u, v, \lambda)$ -structure, Kōdai Math, Sem, Rep., 401-423.

Department of Mathematics Education Cheju National Teacher's College Cheju 690-060, Korea