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ON A STRUCTURE ¢ SATISFYING (¢% + 1)(¢? + a)=0
JONG-IK HYUN

In [4],Yano,Houh and Chen have consider the structure defined by a
tensor field ¢ of type (1,1) satisfying ¢* + ¢2 = 0 or ¢* — ¢? = 0, respec-
tively, and they studied the existence of those structures. In [2],Nikié is
introduces the ¢(—1, —a)-structure satisfying (¢ —1) (4> —a) = 0. In
this paper,we want to consider the structure defined by a tensor field ¢
of type (1,1) satisfying (¢2 + 1) (¢2 + a) = 0. Moreover,we consider the
generalization of the above structure which satisfies the equation;

(6% +a1) (¢ +a2) --- (6* + ) =0,
where a;,as,--- ,a are distinct real numbers.

I. Perliminaries

Let M be an n-dimensional differentiable manifold with (f,U, V,u,v, A)
-structure. Then there exist a tensor field f of type (1,1) on M, vector
fields U and V, 1-forms u and v, and a function A such that

fP=-14+u@U+vQV,
fU ==)V, fV =2,

(1.1) uof=2Av, vof=-Au,
u(U) =ov(V)=1- A%
u(V)=v(U)=0.

Applying f to the first equation of (1.1),we get
(1.2) PHf=M-u®V+veU).
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If X #0, then the (f,U, V,u,v, A)-structure is not an f-structure defined
by Yano [3]. Again,applying f to (1.2) and making use of (1.1), we get

(1.3) (FP+1)(F2+ 1) =0.

Then the (f,U, V,u,v, A)-structure is not a ¢(—1, —a)-structure defined
by Nikic [2].
II. Matric ¢(1,a)-structure

Let M™ be an n-dimensional differentiable manifold of class C*° and
let there be given a tensor field ¢ of type (1.1) and of class ¢® such that

(2.1) (6 +1)(¢*+a)=0, acR*,a#1

For a differentiable manifold with a structure which satisfies the equation
(2.1), we say that it admits a ¢(1, a)-structure. Let

_¢ta  _(#*+1)
(2.2) =G 1—a)’

then we have
l+m=1, B2=1, m?’=m, Im=ml=0.

Thus the operators ! and m applied to the tangent space at a point
of M™ are complementary projection operators. Let L and M be the
complementary distributions corresponding to the operators [ and m
respectively.

From (2.2) we get

#*l=-1, ¢*m=—am and
(2.3) _ _ (24*+a+1)
f -— l— m = m——.

Then it clear that f # 1, f2 = 1 and the manifold M™ admits an almost
product structure f.
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THEOREM 2.1. A differentiable manifold M™ with ¢(1,a)-structure
is of even dimensional.

Proof. Let p be a point of M™. Then we have from (2.3)
$’X =-X, XelL,

which shows that ¢ is an almost complex structure in the subspace L, of
T,(M™) at p and L, is of even dimensional,where we put dim L, = 2k.

From the second equation of (2.3),we get

$*X = —aX, X e M,,

which shows that ¢' = ——¢— is an almost complex structure in the sub-
o P

space M, of T,(M™) at p and M, is of even dimensional. Thus T,(M™)
is of even dimensional, where we put n = 2m.

We now introduce a local coordinate system in the manifold M™
and denote by ¢;~,l;,m;~ the local components of the tensors ¢,1,m,
respectively. We also introduce a positive definite Riemannian metric
g in M™ and take 2k mutually orthogonal unit vectors u®(a,b,¢,--- =
1,2,---,2k) in L and 2(m — k) mutually orthogonal unit vectors u®
(A,B,C,---=2k+1,---,2m)in M.

Then we have

(2.4) Pyl =t Pl =0, mhul =0, mhiui =ub

If we denote by (v¢,v#

¢,vA) the matrix inverse to (u), %), then both v?
and v# are components of linearly independent covarient vectors and

satisfy the relations

(2.5) vlul = 8, vlup =0, viul=0, viuy =464,
(2.6) viul +vfub = 8t
If we put

(27) hji = 'U;-I’U? + 'U;q’UA
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then hj; is a globally well-defined positive definite Reimannian metric
with respect to which (v}, v%) form an orthogonal frame such that vi =
hj,"u:l,’()j1 = hji“h'

From (2.4) and (2.5),we get
(2.8) l;-‘vﬁ = v}, l}’v,‘,4 =0, m;-'v;‘{ =0, m;-‘v,’,4 = vf.
On the other hand, from the first equation of (2.4), we get

Poful = vful, 1’ (6’ — v} uA) = vlul,

from which
(2.9) I* = vlul.

Similarly we get

(2.10) mb = viuh.
If we put
(2.11) lj,' = l;-hti, m;; = m;h“’

We find from (2.7),(2.9) and (2.10)

(2.12) l; = 'U;‘lv.q’ mjii = v;lU:A

(2.13) Ij,‘ = I,'J', mji = mij, l,‘j +mji = hji.
We can easily verify the following relations:
Blthey =1, I'mihy, =0,

t,..3 — .
m;m; his = mj;.

(2.14)

For any vectors X and Y with components X, Y? let us put
m*(X,Y) = m X'Y?, R(X,Y) = h  X'Y?,

(2.15) 1
9(X,Y) = S[MX,Y) + h($X, ¢Y) + (a — Ym*(X,Y)].
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Then we have
h(ug,ua) = m*(ug,uag) =0, ¢g(uz,ug)=0.

Then the distributions L and M are orthogonal with respect to the
metric g. It is easy to verify by using (2.10) and (2.13) that

m*(ua,ub) = m*(¢uaa ¢Ub) = O’
h(¢2uaa ¢2ub) = h(uq,us).

These equations lead to the following:

(2.16) 9(¢X,0Y)=9¢(X,Y) XY €L.

Next,for any vector fields u4 and up in M, we have from (2.10) and
(2.13)

h(ua,up) = m*(ua,up)

h(¢ua, pup) = m*(dua, dup),

h(¢*uy, d*up) = h(—auy, —aug) = a’*m*(u4,up).
These equations lead to the following;:
(2.17) 9(¢X,9Y) =ag(X,Y), X, Y € M.
Thus we have

THEOREM 2.2. Let M™ be an n-dimensional manifold with ¢(1,a)-
structure. Then there exists a positive definite Riemannian metric g
with respect to which L and M are mutually orthogonal and such that
(2.16) and (2.17) hold.

For any vector fields X and Y in M™, from (2.16) and (2.17) we get

9(9X,8Y) = g($IX + ¢mX,dlY + ¢mY’)
= g(IX, IY) + ag(mX, mY),
from which
(2.18) 9(8X,9Y) = g(X,Y) + (a - 1)g(mX,mY),

Thus we have
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THEOREM 2.3. Let M™ be an n-dimensional manifold with ¢(1,a)-
structure. Then there exists a positive definite Riemannian metric g

such that
9(¢X,8Y) = g(X,Y) + (a — 1)g(mX,mY)

for any vector fields X and Y on M™.
Next,from (2.18) we get

9(6X,Y) = g(¢°X,4Y) + (1 — a)(méX,mY)
=g(-X +(1-a)mX,9Y)+ (1 —a)g(éX,mY)
= —9(X,4Y) + (1 — a)g(mX,4Y) + (1 — a)g(¢ X, mY).

Replacing Y by mY in the last equation,we get
§(¢X,mY) + g(mX,$¥) = 0

by virtue of a € R*. Then we have

(2.19) 9(¢X,Y) = —g(X, ¢Y).

Let w be a tensor field of type (0,2) of M™ defined by
W(X,Y) = g(¢X,Y)

for any vector fields X and Y of M™ the we have

(2.20) w(X,Y) = -w(Y,X),

that is, w is a 2-form.

III. Structure group of ¢(1, a)-structure

Take a vector e in the distribution L,then the vector ¢e is also in L
and perpendicular to e,and moreover ¢e has the same length as e with
respect to g. Consequently we can choose 2k orthonormal basis in L
such that

€1,° * , €k, ¢Cl = ¢6k+1,' ot a¢ek = €2¢k.
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Take a vector e in the distribution M, then the vector ¢e is in M and
perpendicular to e. If we put ¢ = \/a¢ ,then ¢ is an almost complex
structure on M, and ¢e has the same length as \/ae with respect to g.

Consequently we can choose 2(m—k) orthonormal basis {e2x+1,-** y€2m}
in M such that

pe2k41 = Valmikt1 s Pemik = Va€om.
Then with respect to the orthonormal basis {e;,--- ,€2m}, the tensors ¢

and ¢ have the components:

E. 0 0 0

{1 0 E; 0 0

- 0 0 Epm-k 0

0 0 0 Ep-k
(3.1) 0 E; 0 0
_|-Ex O 0 0
¢= 0 0 0 VaE

0 0 —aE,—x 0

We call such a frame an adapted frame of the ¢(1, a)-structure. Now take
another adapted frame {€;,--- ,€;,} with respect to which the metric
g and the structure tensor ¢ have the same components as (3.1). If we
put

&i=Tle; (1<i,j<n)

then we can easily find that the orthogonal matrix T has the form

A Bg 0 0
—B;r A 0 0
0 0 Cm-—k Dm—k
0 0 —Dm—k Cm—k

(3.2) T =

Thus the structure group of tangent bundle of the manifold M™ can be
reduced to U(k) x U(m — k). Conversely, if the group of tangent bundle
of the manifold M™ can be reduced to U(k) x U(m — k), then we can
define a positive definite Riemannian metric g and the tensor ¢ of type
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(1.1) as tensor having (3.1) as components with respect to the adapted
frames. Then we have

-E; 0 0 0

2 _ 0 —Ey 0 0

(3-3) ¢ = 0 0 —aFE .k 0
0 0 0 “aEm—k

and it is easily verified that (¢% + 1)(¢% + a) = 0. From this we have

THEOREM 3.1. A necessary and sufficient condition for an n-dimensi-
onal manifold admit a tensor field ¢ of type (1,1) defining a ¢(1,a)-
structure is that the group of tangent bundle of the reduced to the group
U(k) x U(m — k).

IV. Generalization

In this section,we study to generalize the ¢(1, a)-structure. Let M™
be a differentiable manifold of class C® and let there be given a tensor
field ¢ of type (1,1) such that

(4.1) (82 + a1)(#? +a2) - ($% +ax) =0

where a;,as,,- - ,a; are distinct positive real numbers. For a manifold
M™ with a structure which satisfies such condition we say that it admits
a ¢(ai,az,--- ,ar)-structure. Let
) BEE@ )@ a)(@ e (8 4 a),

' (i=1,2-,k)

where
1
(43) ti= (al - a'.) ces (a,-__l —_ a,-)(a,-_,,l - a;‘) ce (ak - ai)

Then we have

I2=1, L=LlL;=0 (i#3)

L+l+---+ =1

From (4.4) we see that the operators ly,l;-- - ,l; acting to the tangent
space at each point of M™ are complementary projection operators.

Then there exist the complementary distributions Ly, Ls,---, Ly cor-
responding to the operators Iy, ls, - - - , Ii, respectively.

(4.4)
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THEOREM 4.1. A differentiable manifold M™ with ¢(ay,az,--- ,ax)-
$tructure is of even dimensional.

Proof. Let p be a point of M™*. From (4.1) and (4.2) we get
(4.5) (]521,' = —a,-l; (z = 1,2, ey k)
If we put ¢ = ,/a;¢; in the distribution L;,then we get $i® = —1 and

there exists an almost complex structure ¢; in (L;)p. Thus (L;)p is of
even dimensional and denote by dim L; = 2r;. Hence we have

n=2r1+2r,+.-- 4 2r;y = 2m.

Next,we can introduce a positive definite Riemannian metric in M™ with
#(ay,aq,--- ,ar)-structure with respect to which Ly, La,--- , L) are mu-
tually orthogonal such that

(4.6) 9(X,Y) = gi(X,Y) + g2(X,Y) +--- + g1(X,Y),
for any vector fields X and Y on M™,where we put
(4.7) gi(X,)Y)=g(LX,,Y), (1=1,2,---k).
For any vector fields X and Y on M™,we get
g(#liX, pLiY') = gi($X, ¢Y) = gi(V/ai¢: X, Vai:Y')
= aigi($:iX, $:Y) = aigi(X,Y),

from which
(4'8) 9':(¢X, ¢Y) = aigt'(X7 Y),
(4.9) 9(8X,8Y) = a191(X,Y) + apg2( X, Y) + --- +

< argk(X,Y).
From (4.8) we get
aigi($X,Y) = gi(¢*X, ¢Y)
= gi(_ai-Xa ¢Y)
= "aigi(Xa ¢Y)'
Since a; is a positive real,we have
gi(¢Xa Y) = _gi(X7 ¢Y)7
from which
(4.10) 9(¢X,Y) = —g(X, 4Y).
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THEOREM 4.2. Let M™ be a manifold with ¢(a1,az,--- ,ax) - struc-
ture. Then there exists a positive definite Riemannian metric g with*
respect to which Ly, Ls,--- , Ly are mutually orthogonal such that

9(9X,Y) = —g(X, ¢Y)

for any vector fields X andY on M™.

Next,take a vector e; in L;, then ¢e; is also in L; and perpendicular
to e;, and ¢e; has the same length as \/a;e; with respect to g. Conse-
quently,we can choose 2r;(= dim L;) orthogonal basis {e;1, - ,€;25 } In
L; such that

¢€i1 = \/aieir,'-}-l’ st 7¢eir.‘ = \/-a—i621'.'-

Then,with respect to the orthonormal basis dsize{e11,- - ,€1r,,*- ,€k1,
.-+, €kar, } the tensor g and ¢ have the components:

E, 0 ... 0O 0
0 E, ... 0 0
(4.11) g=| ... ... ..
0 o ... E, 0
0 0o ... 0 E,
and
0 VaE., ... 0 0
—va,E,, 0 .. 0 0
(4.12)
0 0 . 0 Va,E,,
0 0 ceo —Va E,, 0
We call such a frame an adapted frame of ¢(ay,ay,--- ,ar)-structure.

Let {€;} be another adapted frame in which ¢ and ¢ have the same
components as (4.11) and (4.12) respectively. Put

= i,
e; =Tej,
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then orthogonal matrix T has the form:
A, B, ... 0 0

~B,, A, ... 0 0
(4.13) T=| ... ... ... . ..
o o0 .. C, D,
0 0 .. -D, C,

Thus the structure group of tangent bundle of the manifold M™ can be
reduced to U(ry) x U(rz) X - - - x U(rk). Conversely,if the structure group
of the tangent bundle of the manifold M™ can be reduced to U(ry) x
U(rz) x --- x U(ry), then we can define a positive definite Riemannian
metric g and a ¢(ay, a2, - - - , ar)-structrue with matrices (4.11) and (4.12)
with respect to the adapted frame. Then we have

—~a1E,, 0 0 0
( ) 5 0 -a1E, ... 0 0
4.14 =
0 0 ... —aiE,, 0

0 0 e 0 —arE,,

and it is easily verified that (¢? + a1 )(¢% + a2)--- (62 + ax) = 0. Thus

we have

THEOREM 4.3. A necessary and sufficient condition for an n-dimensi-
onal manifold to admit a ¢(a,,az,--- ,ax)-structure is that the group of
the tangent bundle be reduced the group U(r1) xU(r;) x- - - U(rg), where
n=2ry+2ry+---+2r;.

EXAMPLE. Let CP" be the complex projective space of dim¢ = r;.
Then M = CP™ x--- x CP™ admits a ¢(a;,as,--- ,ak)-structure.
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