Comm. Korean Math. Soc. 6(1991), No. 1, pp. 55-59

MANIFOLDS SATISFYING SIMPLE PRODUCT TUBE FORMULAS

U Jin Choi and Sungyun Lee

1. Introduction

Let $P \subset M$ be an embedding of a compact p-dimensional manifold P into an n-dimensional Riemannian manifold M. We denote by $V_{P}^{M}(r)$ the n-dimensional volume of a solid tube of radius r about P and by $A_{P}^{M}(r)$ the $(n-1)$-dimensional volume of its boundary. Throughout this paper we assume that $r>0$ is less than or equal to the distance from P to its nearest focal point. Then it is well-known that

$$
\begin{equation*}
A_{P}^{M}(r)=\frac{d}{d r} V_{P}^{M}(r) \tag{1}
\end{equation*}
$$

Let $P \subset M$ and $Q \subset N$ be two embeddings, and $P \times Q \subset M \times N$ the corresponding embedding of the product manifold $P \times Q$ to the Riemannian product manifold $M \times N$. The fundamental product formula for the volume of a tube can be written as ([7])

$$
\begin{equation*}
A_{P \times Q}^{M \times N}(r)=r \int_{0}^{\pi / 2} A_{P}^{M}(r \cos \theta) A_{Q}^{N}(r \sin \theta) d \theta \tag{2}
\end{equation*}
$$

From now on we assume that
(3) " $Q \subset N$ is a 0 -dimensional submanifold of 2-dimensional locally Euclidean space
or a 1-dimensional submanifold of 3-dimensional locally Euclidean space."
In [7] the second author showed that $Q \subset N$ satisfies

$$
\begin{equation*}
A_{P \times Q}^{M \times N}(r)=V_{P}^{M}(r) A_{Q}^{N}(r) \tag{4}
\end{equation*}
$$

Received September 24, 1990.
for any $P \subset M$.
In this paper we characterize some low-dimensional spaces of constant curvature by several product formulas similar to (4). Specifically we consider the product relations $(\mathrm{A}) \sim(\mathrm{H})$ with constants a, b, c :
(A) $(2 r+a) A_{P \times Q}^{M \times N}(r)=\left(r^{2}+a r+b\right) A_{P}^{M}(r) A_{Q}^{N}(r)$
(B) $\left(3 r^{2}+2 a r+b\right) A_{P \times Q}^{M \times N}(r)=\left(r^{3}+a r^{2}+b r+c\right) A_{P}^{M}(r) A_{Q}^{N}(r)$
(C) $(a \sin a r) A_{P \times Q}^{M \times N}(r)=(b-\cos a r) A_{P}^{M}(r) A_{Q}^{N}(r)$
(D) $(b+a \cos a r) A_{P \times Q}^{M \times N}(r)=(c+b r+\sin a r) A_{P}^{M}(r) A_{Q}^{N}(r)$
(E) $(r+a) A_{P \times Q}^{M \times N}(r)=(r+2 a) A_{P}^{M}(r) V_{Q}^{N}(r)$
(F) $\left(r^{2}+a r+b\right) A_{P \times Q}^{M \times N}(r)=\left(\frac{2}{3} r^{2}+a r+2 b\right) A_{P}^{M}(r) V_{Q}^{N}(r)$
(G) $(a r \sin a r) A_{P \times Q}^{M \times N}(r)=2(b-\cos a r) A_{P}^{M}(r) V_{Q}^{N}(r)$
(H) $r(b+a \cos a r) A_{P \times Q}^{M \times N}(r)=2(c+b r+\sin a r) A_{P}^{M}(r) V_{Q}^{N}(r)$.

Then the following theorems show that there are restrictions on the manifold M and on the constants in order that one of $(A) \sim(H)$ holds for $Q \subset N$ when $\operatorname{dim} P=0$ or 1 .

Theorem 1. Let $P \subset M$ be an embedding with $\operatorname{dim} P=0$. Assume that $Q \subset N$ satisfies (3).
(i) If $P \subset M$ satisfies (A) (resp. (E)) for $Q \subset N$, then M is locally Euclidean space of dimension 2 and $a=b=0$ (resp. $a=0$).
(ii) If $P \subset M$ satisfies (B) (resp. (F)) for $Q \subset N$, then M is locally Euclidean space of dimension 3 and $a=b=c=0$ (resp. $a=b=0$).
(iii) If $P \subset M$ satisfies either (C) or (G) for $Q \subset N$, then M is a 2-dimensional space of constant curvature a^{2} and $b=1$.
(iv) If $P \subset M$ satisfies either (D) or (H) for $Q \subset N$, then M is a 3-dimensional space of constant curvature $a^{2} / 4$ and $b=-a$, $c=0$.

Theorem 2. Let $P \subset M$ be an embedding with $\operatorname{dim} P=1$. Assume that $Q \subset N$ satisfies (3).
(i) If $P \subset M$ satisfies (A) (resp. (E)) for $Q \subset N$, then M is locally Euclidean space of dimension 2 or 3 and $a=b=0$ (resp. $a=0$).
(ii) If $P \subset M$ satisfies (B) (resp. (F)) for $Q \subset N$, then M is locally Euclidean space of dimension 2, 3 or 4 and $a=b=c=0$ (resp.

$$
a=b=0) .
$$

(iii) If $P \subset M$ satisfies either (C) or (G) for $Q \subset N$, then M is a 3-dimensional space of constant curvature $a^{2} / 4$ and $b=1$.
(iv) If $P \subset M$ satisfies either (D) or (H) for $Q \subset N$, then M is a 2-dimensional space of constant curvature a^{2} and $b=c=0$.

Remark. With the usual conventions $\sin i t=i \sinh t, \cos i t=\cosh t$, $t \in \mathbf{R}$, the above theorems also include the cases of constant negative curvature a^{2} (when a is pure imaginary).

2. Preliminaries

Before proving the theorems we review a few necessary facts.
From the volume formula for a geodesic ball in non-Euclidean space $\mathrm{E}^{n}(K)$ of constant curvature K (see for example [2])

$$
\begin{equation*}
A_{P}^{\mathbf{E}^{n}(K)}(r)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}\left(\frac{\sin \sqrt{K} r}{\sqrt{K}}\right)^{n-1}, \quad \text { where } P \text { is a point }, \tag{5}
\end{equation*}
$$

it is not difficult to see that

$$
\begin{equation*}
A^{\prime \prime}(r)+K A(r)=0 \quad \text { if } \quad n=\operatorname{dim} \mathbf{E}^{n}(K)=2 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\prime \prime}(r)+4 K A(r)=0 \quad \text { if } \quad n=3, \tag{7}
\end{equation*}
$$

where $A(r)=A_{P}^{\mathrm{E}^{n}(K)}(r)$.
The function $A(r)$ can be regarded as the growth function of tubular hypersurfaces. In [3] Gray and Vanhecke strengthened the result of [5] and prove the following.

Theorem 3. Suppose that the growth function $A(r)$ of each geodesic sphere satisfies

$$
\begin{equation*}
A^{\prime \prime}(r)+c(r) A(r)=0 \tag{8}
\end{equation*}
$$

for small $r>0$. Then M has constant curvature $K=c(r)$ and $\operatorname{dim} M=$ 2.

The result analogous to Theorem 3 is as follows ([6]).

Theorem 4. Suppose that the growth function $A(r)$ of each tubular hypersurface about any geodesic segment satisfies (6) for small $r>0$, then M is a space of constant curvature K of dimension 2 or 3 . If $n=\operatorname{dim} M=2$, then $c(r)=K$; if $n=3$, then $c(r)=4 K$.

3. Proof of Theorems

We only prove (ii) in Theorem 1 and (iv) in Theorem 2 since proofs are similar in all cases.

Proof of (ii) in Theorem 1. Let $\operatorname{dim} P=0$. Suppose that $P \subset M$ satisfies (B) or (F) for any $Q \subset N$. Then (B) (resp. (F)) together with (4) gives

$$
\begin{equation*}
\frac{A_{P}^{M}(r)}{V_{P}^{M}(r)}=\frac{3 r^{2}+2 a r+b}{r^{3}+a r^{2}+b r+c} \quad\left(\text { resp. } \frac{A_{P}^{M}(r)}{V_{P}^{M}(r)}=\frac{2 r^{2}+2 a r+2 b}{2 r^{3} / 3+a r^{2}+2 b r}\right) \tag{9}
\end{equation*}
$$

Integrating (9) with respect to r, we see that

$$
V_{P}^{M}(r)=\text { const. }\left(r^{3}+a r^{2}+b r+c\right)
$$

It follows that $\frac{d^{3}}{d r^{3}} A_{P}^{M}(r)=0$. Thus by Theorem 13.4 [3, p.196] (see also [1]) M is locally Euclidean space of dimension 3. Furthermore from (5) we should have $a=b=c=0$ (resp. $a=b=0$). Finally this $P \subset M$ actually satisfies $3 A_{P \times Q}^{M \times N}(r)=r A_{P}^{M}(r) A_{Q}^{N}(r)$ or $3 A_{P \times Q}^{M \times N}(r)=$ $2 A_{P}^{M}(r) V_{Q}^{N}(r)$.

Proof of (iv) in Theorem 2. Let $\operatorname{dim} P=1$. If $P \subset M$ satisfies (D) or (H) for any $Q \subset N$, then we have

$$
\frac{A_{P}^{M}(r)}{V_{P}^{M}(r)}=\frac{b+a \cos a r}{c+b r+\sin a r}
$$

Hence $A_{P}^{M}(r)=A(r)$ satisfies

$$
A^{\prime \prime}(r)+a^{2} A(r)=0
$$

The conclusion of (iv) now follows from Theorem 4 since $P \subset M$ satisfies $a \cos a r A_{P \times Q}^{M \times N}(r)=\sin \operatorname{ar} A_{P}^{M}(r) A_{Q}^{N}(r)$ or $a r \cos a r=2 \sin a r A_{P}^{M}(r) V_{Q}^{N}(r)$.

References

1. J. Erbacher, Riemannian manifolds of constant curvature and the growth function of submanifolds, Michigan Math. J. 19 (1972), 215-223.
2. A. Gray, The volume of a small geodesic ball of a Riemannian manifold, Michigan Math. J. 20 (1973), 329-344.
3. A. Gray and L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math. 142 (1979), 157-198.
4. _, The volumes of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. 44 (1982), 215-243.
5. R.A. Holzsager and H. Wu, A characterization of two-dimensional Riemannian manifolds of constant curvature, Michigan Math. J. 17 (1970), 297-299.
6. S. Lee, The growth function of tubes about geodesics, Comm. Korean Math. Soc. 3 (1988), 249-256.
7. _ Product tube formulas, Illinois J. Math. 33 (1989), 153-161.

Department of Mathematics and
Mathematics Research Center KAIST
Taejon 305-701, Korea

