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MANIFOLDS SATISFYING SIMPLE

PRODUCT TUBE FORMULAS

U JIN CHOI AND SUNGYUN LEE

1. Introduetioq,

Let P C M be an embedding of a compact p-dimensional manifold P
into an n-dimensional Riemannian manifold M. We denote by Vtt(r)
the n-dimensional volume of a solid tube of radius r about P and by
At1(r) the (n-l)-dimensional volume ofits boundary. Throughout this
paper we assume that r > 0 is less than or equal to the distance from P
to its nearest focal point. Then it is well-known that

(1) M d M(Ap (r) = dr Vp r).

Let P c M and Q C N be two embeddings, and P x Q c M x N
the corresponding embedding of the product manifold P x Q to the
Riemannian product manifold M x N. The fundamental product formula
for the volume of a tube can be written as ([7])

From now on we assume that

(3) "Q c N is a O-dimensional submanifold of 2-dimensionallocally
Euclidean space

or a I-dimensional submanifold of 3-dimensional locally Eu
didean space."

In [7] the second author showed that Q C N satisfies

(4)
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for any P C M.
In this paper we characterize some low-dimensional spaces of constant

curvature by several product formulas similar to (4). Specifically we
consider the product relations (A) '" (H) with constants a, b, c :

(A) (2r + a)A!j:~(r) = (r 2 + ar + b)Atf(r)AZ(r)

(B) (3r2 + 2ar + b)A!j:~(r) = (r 3 + ar2 + br + c)Atf(r)AZ(r)
(C) (asinar)A:t:t(r) = (b - cosar)Atf(r)AZ(r)

(D) (b + a cos ar)A:txxt(r) = (c + br + sinar)Af!(r)AZ(r)

(E) (r + a)A!jxX~(r) = (r + 2a)AW(r)Vcr(r)

(F) (r2 + ar + b)A~:~ (r) = Ur2 + ar + 2b) At!(r)V<f(r)

(G) (arsinar)AW:~(r)= 2(b - cosar)Atf(r)Vcr(r)

(H) r(b + acosar)A:t:~(r) = 2(c + br + sinar)AW(r)Vcr(r).

Then the following theorems show that there are restrictions on the
manifold M and on the constants in order that one of (A) '" (H) holds
for Q C N when dim P = 0 or 1.

THEOREM 1. Let P C M be an embedding with dim P = O. Assume
that Q c N satisfies (3).

(i) IfPc M satisfies (A) (resp. (E)) for QC N, then M is locally
Euc1idean space of dimension 2 and a = b = 0 ( resp. a = 0).

(ii) If P c M satisfies (B) (resp. (F)) for Q C N, then M is
locally Euc1idean space of dimension 3 and a = b = c = 0 (resp.
a = b = 0).

(iii) If P C M satisfies either (C) or (G) for Q C N, then M is a
2-dimensional space of constant curvature a2 and b = 1. .

(iv) If P C M satisfies either (D) or (H) for Q C N, then M is
a 3-dimensional space of constant curvature a2 /4 and b = -a,
c= O.

THEOREM 2. Let P C M be an embedding with dimP = 1. Assume
that Q C N satisfies (3).

(i) IfPc M satisfies (A) (resp. (E)) for QC N, then M is locally
Euclidean space of dimension 2 or 3 and a = b = 0 (resp. a = 0).

(ii) IfPc M satisfies (B) (resp. (F)) for QC N, then M is locally
Euc1idean space of dimension 2, 3 or 4 and a = b = c = 0 (resp.
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(5)

a = b = 0).
(iii) H P C M satisfies either (C) or (G) for Q C N, then M is a

3-dimensional space of constant curvature a2 /4 and b = l.
(iv) H P c M satisfies either (D) or (H) for Q C N, then M is a

2-dimensional space of constant curvature a 2 and b = c = O.

REMARK. With the usual conventions sin it = isinht, cos it = cosht,
t E R, the above theorems also include the cases of constant negative
curvature a 2 (when a is pure imaginary).

2. Preliminaries

Before proving the theorems we review a few necessary facts.
From the volume formula for a geodesic ball in non-Euclidean space

En(K) of constant curvature K (see for example [2])

E"(K) _ 21r n
/

2 (Sin -IKr ) n-l
A p (r) - r(n/2) Vi( ,where P is a point,

it is not difficult to see that

(6)

and

AI/(r) + KA(r) = 0 if n = dim En(K) = 2

(7) AI/(r)+4KA(r)=0 if n=3,

E"(K)where A(r) = A p (r).
The function A(r) can be regarded as the growth function of tubular

hypersurfaces. In [3] Gray and Vanhecke strengthened the result of [5]
and prove the following.

THEOREM 3. Suppose that the growth function A(r) ofeach geodesic
sphere satisfies

(8) AI/(r) +c(r)A(r) = 0

for small r > O. Then M has constant curvature K = c(r) and dim M =
2.

The result analogous to Theorem 3 is as follows ([6]).
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(
AW(r) 2r2 + 2ar + 2b )

resp. Vpt(r) = 2r3 /3 + ar2 + 2br .

THEOREM 4. Suppose that the growth function A(r) of each tubular
hypersurface about any geodesic segment satisfies (6) for small r > 0,
then M is a space of constant curvature K of dimension 2 or 3. H
n = dim M = 2, then c(r) = K ; ifn = 3, then c(r) = 4K.

3. Proof of Theorems

We only prove (ii) in Theorem 1 and (iv) in Theorem 2 since proofs
are similar in all cases.

Proof of (ii) in Theorem 1. Let dimP = O. Suppose that P c M
satisfies (B) or (F) for any Q eN. Then (B) (resp. (F)) together with
(4) gives
(9)
AW(r) 3r2 + 2ar +b
V;'(r) = r3 +ar2 +br+c

Integrating (9) with respect to r, we see that

Vpt(r) = const.(r3 + ar2 + br + c).

d3

It follows that dr3 AW(r) = O. Thus by Theorem 13.4 [3, p.196] (see

also [1]) M is locally Euclidean space of dimension 3. Furthermore from
(5) we should have a = b = c = 0 (resp. a = b = 0). Finally this
Pc M actually satisfies 3AW:t(r) = rAW(r)AZ(r) or 3AW:t(r) =
2AW(r)V<f(r).

Proof of (iv) in Theorem 2. Let dimP = 1. IT P C M satisfies (D)
or (H) for any Q eN, then we have

A W(r) b+ a cos ar
Vpt(r) = c + br + sinar·

Hence AW(r) = A(r) satisfies

A"(r) +a2A(r) = O.

The conclusion of (iv) now follows from Theorem 4 since P C M satisfies
a cosarAWxxC(r) = sinarAt/(r)AZ(r) or ar cos ar = 2 sin arAW(r)VJ'(r).
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