CHAIN RECURRENCE AND RESIDUAL SETS

Sung Kyu Choi, Keon Hee Lee and Jong Suh Park

M. Hurley[3] showed that there is a residual subset J of the set of \mathbf{C}^{1}-diffeomorphisms on any compact Riemannian manifold M such that for any $f \in J$, the maps
(i) $f \longrightarrow C R(f)$
(ii) $f \longrightarrow$ (number of chain components for f)
are continuous.
The purpose of theis paper is to extend the above result to $\mathbf{C}^{\mathbf{1}}$-flows on a compact Riemannian manifold M. The main result is

THEOREM. There is a residual subset \mathcal{R} of $\mathcal{X}^{\prime}(M)$ such that for any $X \in \mathcal{X}^{\prime}(M)$ the maps
(i) $X \rightarrow C R(X)$
(ii) $X \longrightarrow$ (number of chain components for X)
are continuous.
Throughout this paper M will denote a compact Riemannian manifold with metric d, and \mathcal{X}^{\prime} will denote the set of C^{1}-flows on M, that is,

$$
\begin{aligned}
\mathcal{X}^{\prime}(M)= & \left\{X: M \times \mathbf{R} \longrightarrow M \text { is } C^{1}: X(x, 0)=x\right. \\
& X(x, s+t)=X(X(x, s), t), x \in M, s, t \in \mathbf{R}\}
\end{aligned}
$$

We shall denote $X(x, t)$ by $X^{t}(x)$ or $x t$ for $(x, t) \in M \times \mathbf{R}$. We give $\mathcal{X}^{\prime}(M)$ the topology generated by the C^{0}-metric on generating vector fields

$$
d_{0}(X, Y)=\sup \left\{\left\|X^{\prime}(x, 0)-Y^{\prime}(x, 0)\right\|: X \in M\right\}
$$

Received Aug 29, 1990.
The present studies were supported by the Basic Science Research Institute Program, Ministry of Education, Korea, 1989.

Let $\epsilon>0$ and $a>0$ be given. For any $x, y \in M$, we say that a sequence $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{n}$ in $M \times \mathbf{R}$ is called an (ϵ, a)-chain going from x to y for $X \in \mathcal{X}(M)$ if
(i) $x_{1}=x, t_{i} \geq a, i=1, \cdots, n$,
(ii) $d\left(x_{i-1}-t_{i-1}, x_{i}\right)<\epsilon$ and $d\left(x_{n} t_{n}, y\right)<\epsilon$,
$i=2, \cdots, n$. The sequence $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{n}$ is called an ϵ-chain if $1 \leq t_{i} \leq 2$ for each $i=l, \cdots, n$.

The chain recurrent set for X, denoted by $C R(X)$, is the set $\{x \in M$: for each $\epsilon>0$ and $a>0$ there is an (ϵ, a)-chain going from x to $x\}$. There is a natural equivalence relation defined on $C R(X): x \sim y$ if and only if for each $\epsilon>0$ and $a>0$ there exist two (ϵ, a)-chains; going from x to y and going from y to x. Equivalence classes under this equivalence relation are called chain components of X. It turns out for flows on compact manifolds that the chain components are exactly the connected components of $C R(X)$ (See [4]).

To Prove our theorem, we need some lemmas.
Lemma 1. Let $h: \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+}$be a strictly positive (but not necessarily continuous) function such that
(1) for any $\epsilon>0, d(x, y)<h(\epsilon)$ and $1 \leq t \leq 2$ imply that $d(x t, y t)<$ $\epsilon / 4$.
(2) for any $i<j, h^{j}<h^{i}$.

If $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{n}$ is an $h^{n}(\epsilon)$-chain, then $d\left(x_{1} \sum_{i=1}^{n} t_{i}, x_{n} t_{n}\right)<\epsilon / 2$.
Proof. Let $\epsilon>0$ be arbitrary. Then we can choose $0<\delta(\epsilon)<\epsilon$ such that if $d(x, y)<\delta$ then $d(x t, y t)<\epsilon / 4$ for any $t \in[1,2]$. The function $h: \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+}$defined by $h(\epsilon)=\delta(\epsilon)$ satisfies the conditions (i) and (ii). Hence we amy assume that the function h exists.

We will prove the lemma by induction on n. If $n=1$, there is nothing to prove. If $n=2$, then the result is clear by the condition (i). Suppose the result is known for a given $n \geq 2$; we shall establish it for $n+1$.

Let $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{n+1}$ be an $h^{n+1}(\epsilon)$-chain. Since $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{n}$ is an $h^{n}(h(\epsilon))$ chain, we have

$$
d\left(x_{1} \sum_{i=1}^{n} t_{i}, x_{n} t_{n}\right)<h(\epsilon) / 2<h(\epsilon) .
$$

By the assumption (i), we get

$$
d\left(x_{1} \sum_{i=1}^{n+1} t_{i}, x_{n}\left(t_{n}+t_{n+1}\right)\right)<\epsilon / 4
$$

By the definition of the chain, we obtain

$$
d\left(x_{n} t_{n}, x_{n+1}\right)<h^{n+1}(\epsilon)<h(\epsilon)
$$

and so

$$
d\left(x_{n}\left(t_{n}+t_{n+1}\right), x_{n+1} t_{n+1}\right)<\epsilon / 4 .
$$

Consequently we have

$$
d\left(x_{1} \sum_{i=1}^{n+1} t_{i}, x_{n+1} t_{n+1}\right)<\epsilon / 2 .
$$

Lemma 2. For any tow points x, y in $C R(M), x \sim y$ if and only if for any $\epsilon>0$ there exist two ϵ-chains; going from x to y and going from y to x.

Proof. The necessity is obvious. To prove the sufficiency, we let $\epsilon>0$ and $a>0$ be arbitrary. We may assume that $a>1$. We shall construct (ϵ, a)-cahins; going from x to y and going from y to x. Let p be the greatest integer smaller than $a+1$. Choose two $2^{2 p}(\epsilon)$-chains; $\left\{\left(x_{i}, t_{i}\right)\right\}_{i=1}^{n}$ going from x to y and $\left\{\left(y_{j}, s_{j}\right)\right\}_{j=1}^{m}$ going from y to x. For each $k \in \mathbf{Z}$ with $1 \leq k \leq(p+1) n+p m$, define $z_{k} \in M$ and $1 \leq r_{k} \leq 2$ as follows:

$$
\left.\begin{array}{c}
z_{k}=\left\{\begin{array}{l}
x_{k-i(n+m)}, \text { if } i(n+m)<k \leq(i+1) n+i m, \text { where } i=0,1, \cdots, p, \\
y_{k-(j+1) n-j m}, \text { if }(j+1) n+j m<k \leq(j+1)(n+m),
\end{array}\right. \\
\text { where } j=0,1, \cdots, p-1,
\end{array}\right\} \begin{gathered}
r_{k-i(n+m),} \text { if } i(n+m)<k \leq(i+1) n+i m, \text { where } i=0,1, \cdots, p, \\
s_{k-(j+1) n-j m,}, \text { if }(j+1) n+j m<k \leq(j+1)(n+m), \\
\text { where } j=0,1, \cdots, p-1 .
\end{gathered}
$$

Then $\left\{\left(z_{l}, r_{1}\right), \cdots,\left(z_{(p+1) n+p m}, r_{(p+1) n+p m}\right)\right\}$ is also an $h^{2 p}(\epsilon)$-chain going from x to y. Let $(p+1) n+p m=s p+q$ for some $0 \leq q<p$. Since $h^{2 p}(\epsilon)<h^{p}(\epsilon),\left\{\left(z_{(i-1) p+1}, r_{(i-1) p+1}, \cdots,\left(z_{i p}, r_{i p}\right)\right\}\right.$ is an $h^{p}(\epsilon)$-chain. By Lemma 1, we have

$$
d\left(z_{(i-1) p+1} \sum_{j=1}^{p} r_{(i-1) p+j}, z_{i p} r_{i p}\right)<\epsilon / 2
$$

Since $h^{2 p}(\epsilon)<h^{p+q}(\epsilon),\left\{\left(z_{(s-1) p+1}, r_{(s-1) p+1}\right), \cdots,\left(z_{s p+q}, r_{s p+q}\right)\right\}$ is an $h^{p+q}(\epsilon)$-chain. By Lemma 1, we have

$$
d\left(z_{(s-1) p+1} \sum_{j=1}^{p+q} r_{(s-1) p+j}, z_{s p+q} r_{s p+q}\right)<\epsilon / 2 .
$$

Let $w_{1}=z_{1}, w_{2}=z_{p+1}, \cdots, w_{s}=z_{(s-1)+1}$. Let $\tau_{1}=\sum_{j=1}^{p} r_{j}, \tau_{2}=$ $\sum_{j=1}^{p} r_{p+j}, \cdots, \tau_{s}=\sum_{j=1}^{p+q} r_{(s-1) p+j}$. Then the sequence $\left\{\left(w_{i}, \tau_{i}\right)\right\}_{i=1}^{s}$ is a desired (ϵ, a)-chain going from x to y. Similarly we can construct an (ϵ, a)-chain going from y to x. This completes the proof.

Let X_{1} and X_{2} be metric spaces with X_{2} compact. Let $F X_{2}$ be the set of all closed non-empty subsets of X_{2} with the Hausdorff metric

$$
\rho(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(A, b)\right\}
$$

A map $f: X_{1} \longrightarrow F X_{2}$ is called upper (lower) semicontinuous at $x \in X_{1}$ if for any $\epsilon>0$ there exists $\delta>0$ such that if $d(s, y)<\delta$ then $f(y) \subset$ $B(f(x), \epsilon),(f(y) \subset B(f(x), \epsilon))$ respectively. Recall that a subset S of a topological space X_{1} is residual if S can be realized as a countable intersection of open dense subsets of X_{1}.

Lemma 3. [3]. Let $f: X_{1} \longrightarrow F X_{2}$ be upper (lower) semicontinuous. Then the set of all continuity points of f is a residual subset of X_{1}.

Now we consider a map

$$
C R: \mathcal{X}^{\prime}(M) \longrightarrow F M
$$

sending $X \in \S^{\prime}(M)$ to $C R(X)$. We will show that there exists a residual subset \mathcal{R}_{1} of $\mathcal{X}^{\prime}(M)$ such that the map $C R$ is continuous in each point of \mathcal{R}. For this, we need a lemma.

Lemma 4. Suppose a sequence X_{n} in $\mathcal{X}^{\prime}(M)$ converges to $X, x_{n} \longrightarrow$ x and $y_{n} \longrightarrow y$ in M, and that for each n and each positive ϵ there is an ϵ-chain for X_{n} going from x_{n} to y_{n}. Then for each $\epsilon>0$ there is an ϵ-chain for X going from x to y.

Proof. Let $\epsilon>0$ be arbitrary and let $a \in M$. For any $t \in[1,2]$ there is $\delta(a, t)>0$ such that if $d_{0}(X, Y)<\delta(a, t), d(a, b)<\delta(a, t)$ and $|t-s|<\delta(a, t)$ then $d\left(X^{t}(a), Y^{s}(b)\right)<\epsilon / 4$. Since $[1,2]$ is compact, there exists a finite set $\left\{t_{i} \in[1,2]: i=1, \cdots, n\right\}$ such that $[1,2] \subset$ $\cup_{i=1}^{n} B\left(t_{i}, \delta\left(a, t_{i}\right)\right)$. Let $\delta(a)=\min \left\{\delta\left(a, t_{i}\right):=1, \cdots, n\right\}$. Then we have that if $d_{0}(X, Y)<\delta(a)$ and $d(a, b)<\delta(a)$, then $d\left(X^{t}(a), Y^{t}(b)\right)<\epsilon / 2$ for any $t \in[1,2]$. Hence, for any $a \in M$, we can choose $\delta(a)>0$ such that if $d_{0}(X, Y)<\delta(a)$ and $d(a, b)<\delta(a)$, then $d\left(X^{t}(a), Y^{t}(b)\right)<\epsilon / 2$ for any $t \in[1,2]$. Consider the open covering $\{B(a, \delta(a) / 2): a \in M\}$ of M. We can select a finite set $\left\{a_{i} \in M: i=1, \cdots, n\right\}$ of M such that $M=\bigcup_{i=1}^{n} B\left(a_{i}, \delta\left(a_{i}\right) / 2\right)$. Let $\delta=\min \left\{\delta\left(a_{i}\right) / 2>0: i=1, \cdots, n\right\}$. Then we have that if $d_{0}(X, Y)<\delta$ and $d(a, b)<\delta$, then $d\left(X^{t}(a), Y^{t}(b)\right)<\epsilon$ for any $a, b \in M$ and any $t \in[1,2]$. We may assume that there exists $0<\delta<$ $\epsilon / 3$ such that if $d_{0}(X, Y), \delta$ and $d(a, b)<\delta$, then $d\left(X^{t}(a), Y^{t}(b)\right)<\epsilon / 3$ for any $t \in[1,2]$. Choose m such that $d_{0}\left(X_{m}, X\right)<\epsilon, d\left(x_{m}, x\right)<\delta$ and $d\left(y_{m}, y\right)<\delta$. By the assumption, we select $\epsilon / 3$-chain $\left\{\left(z_{i}, t_{i}\right)\right\}_{i=1}^{n}$ for X_{m} going from x_{m} to y_{m}. Then the sequence $\left\{\left(x, t_{1}\right),\left(z_{2}, t_{2}\right), \cdots,\left(z_{n}, t_{n}\right)\right\}$ in an ϵ-chain for X going from x to y. This completes the proof.

Theorem 5. There is a residual subset \mathcal{R}_{1} of $\mathcal{X}^{\prime}(M)$ such that the map $C R$ is continuous in each point of \mathcal{R}_{1}.

Proof. It is enough to show that the map $C R$ is upper semicontinuous. Suppose not. Then we can choose $\epsilon>0$ such that for each $n>0$ there
exists $X_{n} \in \mathcal{X}^{\prime}(M)$ such that

$$
d_{0}\left(X_{n}, X\right)<1 / n \text { and } C R\left(X_{n}\right) \not \subset B(C R(X), \epsilon) .
$$

Thus we can select $x_{n} \in C R\left(X_{n}\right)$ satisfying $d\left(x_{n}, C R(X)\right) \geq \epsilon$. We may assume that $x_{n} \longrightarrow x \in M$. Then we have $d(x, C R(X)) \geq \epsilon$. Since $X_{n} \longrightarrow X$ and $x_{n} \in C R\left(X_{n}\right)$, by lemma 4, we get $x \in C R(X)$. This is a contraction, and so completes the proof.

We consider a map

$$
N: \mathcal{X}^{\prime}(M) \longrightarrow[0, \infty]
$$

sending each $X \in \mathcal{X}^{\prime}(M)$ to the number of chain components for X. We will show that there exists a residual subset \mathcal{R} of $\mathcal{X}^{\prime}(M)$ such that the $\operatorname{map} N$ is continuous in each point of \mathcal{R}. For this we need a lemma which characterize the lower semicontinuity using the concept of openness.

Lemma 6. A map $f: X_{1} \longrightarrow F X_{2}$ is lower semicontinuous at $x \in X_{1}$ if and only if for any open subset U of X_{2} with $U \cap f(x) \neq \phi$, there exists a neighborhood V of x in X_{1} such that $V \cap f(y) \neq \phi$ for any $y \in V$.

Proof. Suppose that the map f is lower semicontinuous at $x \in X_{1}$. Let $z \in U \cap f(x)$. Then there is $\epsilon>0$ satisfying $B(z, \epsilon) \subset U$. By the assumption, there exists $\delta>0$ such that if $d(x, y)<\delta$ then $f(x) \subset$ $B(f(y), \epsilon)$. Put $V=B(x, \delta)$. For any $y \in V$, we have $z \in f(x) \subset$ $B(f(y), \epsilon)$, and so $d(z, w)<\epsilon$ for some $w \in f(y)$. This means that $f(y) \cap U \neq \phi$.

Let $\epsilon>0$ be arbitrary. Since $\{B(z, \epsilon / 2): z \in f(x)\}$ is an open covering of $f(x)$, there are $z_{1}, \cdots, z_{n} \in f(x)$ such that $f(x) \subset \cup_{i=1}^{n} B\left(z_{i}, \epsilon / 2\right)$. By the assumption, there exist neighborhoods V_{i} of x such that if $y \in V_{i}$ then $B\left(z_{i}, \epsilon / 2\right) \cap f(y) \neq \phi$. Choose $\delta>0$ satisfying $B(x, \delta) \subset \cap_{i=1}^{n} V_{i}$. Then we have that if $d(x, y)<\delta$ then $f(x) \subset B(f(y), \epsilon)$. To show this, we let $w \in f(x)$. Then we have $w \in B\left(z_{i}, \epsilon / 2\right)$ for some i. Since $y \in B(x, \delta) \subset V_{i}, B\left(z_{i}, \epsilon / 2\right) \cap f(y) \neq \phi$, say $u \in B\left(z_{i}, \epsilon / 2\right) \cap f(y)$. Then we get

$$
d(w, u) \leq d\left(w, z_{i}\right)+f\left(z_{i}, u\right)<\epsilon
$$

This implies that $w \in B(f(y), \epsilon)$, and so complets the proof.

Theorem 7. There is a residual subset \mathcal{R} of \mathcal{R}_{1} such that the map N is continuous in each point of \mathcal{R}.

Proof. It is enough to show that the map $N: \mathcal{R}_{1} \longrightarrow[0, \infty]$ is lower semicontinuous. Let $X \in \mathcal{R}_{1}$ and suppose that $N(X)$ is finite so that we can list the X-chain components M_{1}, \cdots, M_{k}. Then there is $\epsilon>0$ such that $B\left(M_{i}, \epsilon\right) \cap B\left(M_{j}, \epsilon\right)=\phi$ if $i \neq j$. Since the map $C R$ is continuous, by Lemma 6 , we can choose $\delta>0$ such that if $d_{0}(X, Y)<\delta$, then

$$
C R(Y) \subset B(C R(X), \epsilon) \text { and } C R(Y) \cap B\left(M_{i}, \epsilon\right) \neq \phi
$$

for all $i=1, \cdots, k$. Let A be a chain component of $C R(Y)$. Then we have

$$
A \subset C R(Y) \subset B(C R(X), \epsilon) \subset \cup_{i=1}^{k} B\left(M_{i}, \epsilon\right)
$$

Thus we obtain

$$
A=A \cap\left(\cup_{i=1}^{k} B\left(M_{i}, \epsilon\right)\right)=\cup_{i=1}^{k}\left(A \cap B\left(M_{i}, \epsilon\right)\right) .
$$

Since A is a connected component in $C R(Y)$, there exists a unique i satisfying $A \cap B\left(M_{i}, \epsilon\right) \neq \phi$. Hence we have $A \subset B\left(M_{i}, \epsilon\right)$. For any $i=1, \cdots, k, C R(Y) \cap B\left(M_{i}, \epsilon\right) \neq \phi$. By the above property, we can choose a unique chain component B of $C R(Y)$ such that $B \subset B\left(M_{i}, \epsilon\right)$. This implies that $N(X) \leq N(Y)$.

Suppose that $N(X)=\infty$. For each $n \in \mathbf{Z}^{+}$, we can choose $\delta(n)>0$ such that if $d_{0}(X, Y)<\delta$ the $N(Y) \geq n$, by the above property. This means that $\lim _{Y \longrightarrow X} N(Y)=\infty$. Hence N is continuous at X. This completes the proof.

A residual subset of a residual set is also residual. By combining Theorem 6 and Theroem 7, we obtain the main theorem of this paper.

Theorem 8. There is a residual subset \mathcal{R} of $\mathcal{X}^{\prime}(M)$ such that the maps $C R$ and N are continuous in each point of \mathcal{R}.

References

1. J.P. Aubin, Applied Abstract Analysis, Wiley-Interscience Publication, New York, 1977.
2. M. Hurley, Attractors : persistence, and density of their basins, Trans. Amer. Math. Soc. 269 (1982), 247-271.
3. \qquad , Bifurcation and chain recurrence, Ergod. Th. \& Dynam. Sys. 3 (1983), 231-240.
4. -_, Fixed points of topologically stable flows, Trans. Amer. Math. Soc. 294 (1986), 625-633.
5. M. Komuro, One-parameter flows with the pseudo-orbit tracing property, Mh. Math. 98 (1984), 219-253.

Department of Mathematics
Chungnam National University
Taejon 305-764, Korea

