ON THE SUPERSINGULAR REDUCTION OF DRINFEL'D MODULES WITH COMPLEX MULTIPLICATION

Sunghan Bae and Pyung-Lyun Kang

Let k be the rational function field $\mathbf{F}_{q}(T)$ and $A=\mathbf{F}_{q}[T]$. We assume that q is odd. Let ϕ be a Drinfel'd module of rank 2 over an A-field E (that is, we have a structure map $\gamma: A \rightarrow E$). When $E=C$, the completion of the algebraic closure of $\mathbf{F}_{q}\left(\left(\frac{1}{T}\right)\right)$, we say that ϕ has 'complex multiplication'('singular' in the terminology of [G]) if $\operatorname{End}_{C}(\phi)$ is bigger than A. In fact, $\operatorname{End}_{C}(\phi)$ is an order of imaginary quadratic extension of $\mathbf{F}_{q}(T)$, i.e., a quadratic extension where ∞ does not split. When $\gamma: A \rightarrow E$ has kernel $(p(T))$ where $p(T)$ is a monic irreducible polynomial of degree d, we say that ϕ is of characteristic $(p(T)$). When ϕ is of characteristic $(p(T))$, we say that ϕ is 'supersingular' if

$$
\phi_{p}(T)=\tau^{2 d} .
$$

From now on suppose that a rank 2 Drinfel'd module ϕ over C is given by

$$
\begin{equation*}
\phi_{T}=T+\lambda \tau+\tau^{2} \tag{1}
\end{equation*}
$$

where $\tau(a)=a^{q}$, has a complex multiplication by $\sqrt{p(T)}$, where $p(T)$ is an irreducible polynomial in A. Then $p(T)$ is either a polynomial of odd degree or a polynomial of even degree with leading coefficient in $\mathbf{F}_{q}-\mathbf{F}_{q}^{2}$. It is known ([H], p188) that we can find

$$
\begin{equation*}
\phi_{\sqrt{p(T)}}=\sqrt{p(T)}+a_{1} \tau+a_{2} \tau^{2} \cdots+a_{d} \tau^{d} \tag{2}
\end{equation*}
$$

Since ϕ has complex multiplication, $j=\lambda^{q+1}$ is an algebraic integer and so is $\lambda([\mathrm{G}],(4.3))$. Let $K=k(\sqrt{p(T)}), L=K(j)$ and $\widetilde{L}=K(\lambda)$. Let

[^0]B and \widetilde{B} be the integral closures of A in L and \widetilde{L}, respectively. Then $\phi_{T} \in \widetilde{B}\{\tau\}$ and from
$$
\phi_{\sqrt{P(T)}} \phi_{T}=\phi_{T} \phi_{\sqrt{p(T)}}
$$
we have $\phi_{\sqrt{p(T)}}$ has coefficients in $\widetilde{B}([G],(3.3))$.
One natural question is 'For which prime ideal q of \widetilde{B} is the reduced Drinfel'd module $\tilde{\phi}$ at q supersingular?'

In the following we will show that the reduction of ϕ at the prime ideal p of \widetilde{B} lying above $(p(T)$) is supersingular.

Let

$$
\phi_{p(T)}=\sum_{i=0}^{2 d} b_{i} \tau^{i} .
$$

From (2) we get

$$
\begin{equation*}
b_{i}=\sum_{j=0}^{i} a_{j} a_{i-j}^{q^{j}} \tag{3}
\end{equation*}
$$

Here we let $a_{0}=\sqrt{p(T)}$ and $a_{j}=0$ for $j>d$.
Lemma. For $j<\frac{d}{2}, a_{j} \equiv 0(\bmod \mathfrak{p})$.
Proof. We know that $b_{i} \equiv 0(\bmod \mathfrak{p})$ for $i<d$ and $a_{0} \equiv 0(\bmod \mathfrak{p})$. Assume that $a_{k} \equiv 0(\bmod \mathfrak{p})$ for $k<j<\frac{d}{2}$. Then

$$
\begin{equation*}
0 \equiv b_{2 j} \equiv a_{j}^{q_{j}^{j}+1}+\sum_{\substack{k=0 \\ k \neq j}}^{2 i} a_{k} a_{2 j-k}^{q^{k}} \quad(\bmod \mathfrak{p}) \tag{4}
\end{equation*}
$$

For $k \neq j$, either k or $2 j-k$ is less than j. Hence by induction hypothesis

$$
a_{j}^{q^{j}+1} \equiv 0(\bmod \mathfrak{p})
$$

and so

$$
a_{j} \equiv 0(\bmod \mathfrak{p})
$$

Theorem. The reduced Drinfel' d module at \mathfrak{p} is supersingular.
Proof. It suffices to show that $b_{d} \equiv 0(\bmod \mathfrak{p})$ by the elementary properties of Drinfel'd modules. From (3), we get

$$
\begin{equation*}
b_{d}=\sum_{k=0}^{d} a_{k} a_{d-k}^{q^{k}} . \tag{5}
\end{equation*}
$$

If d is odd, either k or $d-k$ is less than $\frac{d}{2}$ for $k \leq d$. Therefore $b_{d} \equiv 0$ ($\bmod \mathfrak{p}$) by the lemma. If $d=2 m$ is even, let $\bar{\phi}$ and \bar{a}_{i} be the reductions modulo p. Then by the lemma,

$$
\begin{aligned}
\bar{\phi}_{\sqrt{p(T)}} & =\bar{a}_{m} \tau^{m}+\bar{a}_{m+1} \tau^{m+1}+\cdots+\bar{a}_{2 m} \tau^{2 m} \\
\bar{\phi}_{T} \bar{\phi} \sqrt{p(T)} & =\bar{a}_{m} \bar{T} \tau^{m}+\text { higher terms } \\
\bar{\phi}_{\sqrt{p(T)}} \bar{\phi}_{T} & =\bar{a}_{m} \bar{T}^{q^{m}} \tau^{m}+\text { higher terms } .
\end{aligned}
$$

Since $\bar{\phi}_{\sqrt{p(T)}} \bar{\phi}_{T}=\bar{\phi}_{T} \bar{\phi} \sqrt{p(T)}$, we have $\bar{a}_{m} \bar{T}=\bar{a}_{m} \bar{T}^{q^{m}}$. Hence

$$
a_{m}\left(T^{q^{m}}-T\right) \equiv 0 \quad(\bmod \mathfrak{p})
$$

Suppose that $a_{m} \not \equiv 0(\bmod \mathfrak{p})$. Then $T^{q^{m}}-T \equiv 0(\bmod \mathfrak{p})$, which implies that $p(T)$ divides $T^{q^{m}}-T$. But this is impossible because $p(T)$ is irreducible polynomial of degree $2 m$. Therefore $a_{m} \equiv 0(\bmod \mathfrak{p})$ and (5) implies that

$$
b_{d}=b_{2 m} \equiv a_{m}^{q^{m}+1} \equiv 0 \quad(\bmod \mathfrak{p}) .
$$

Corollary. For every $j<d$, we have $a_{j} \equiv 0(\bmod \mathfrak{p})$
Proof. We know from the Theorem that $b_{i} \equiv 0(\bmod \mathfrak{p})$ for every $i<2 d$. Hence the proof of Lemma holds for $j<d$.

It is shown that if d is even (resp. odd), then there are $\frac{q^{d}-1}{q^{2}-1}$ (resp: $\left.q \cdot\left(\frac{q^{d}-1}{q^{2}-1}\right)+1\right)$ supersingular j-invariants in characteristic $(p(T))$ ([G], (5.9)). One may ask, "For each supersingular j-invariant in characteristic ($p(T)$) does there exists a Drinfel'd module over C with complex multiplication by $\sqrt{p(T)}$ whose reduction at p has the given j-invariant?"

Example. Let $q=3$ and $p(T)=T^{3}-T-1$. Then

$$
\phi_{T}=T+\sqrt{p(T)}\left(T^{3}-T\right) \tau+\tau^{2}
$$

has complex multiplication by $\sqrt{p(T)}$. In this case

$$
\begin{aligned}
\phi_{\sqrt{p(T)}}= & \sqrt{p(T)}+\left(p(T)^{2}-p(T)\right) \tau \\
& +\sqrt{p(T)}(p(T)-1)\left(p(T)\left(T^{3}-T+1\right)^{2}-1\right) \tau^{2}+\tau^{3}
\end{aligned}
$$

Then the reduced Drinfel'd module is given by

$$
\phi_{T}=\bar{T}+\tau^{2},
$$

so that the reduced j-invariant is 0 .

References

[G] Gekeler, E, Zur Arithmetik von Drinfel'd-Moduln, Math. Ann. 262 (1983), 167-182.
[H] Hayes, D, Explicit class Field theory in Global Function Fields, Studies in Algebra and Number Theory (Rota, G.C., ed.), Academic Press, New York, 1979.

Department of Mathematics
KAIST
Taejon 305-701, Korea
and
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea

[^0]: Received June 28, 1990.

