Comm. Korean Math. Soc. 6(1991), No. 1, pp. 27-30

ON THE SUPERSINGULAR REDUCTION OF DRINFEL'D MODULES WITH COMPLEX MULTIPLICATION

SUNGHAN BAE AND PYUNG-LYUN KANG

Let k be the rational function field $\mathbf{F}_q(T)$ and $A = \mathbf{F}_q[T]$. We assume that q is odd. Let ϕ be a Drinfel'd module of rank 2 over an A-field E (that is, we have a structure map $\gamma : A \to E$). When E = C, the completion of the algebraic closure of $\mathbf{F}_q((\frac{1}{T}))$, we say that ϕ has 'complex multiplication'('singular' in the terminology of [G]) if $\operatorname{End}_C(\phi)$ is bigger than A. In fact, $\operatorname{End}_C(\phi)$ is an order of imaginary quadratic extension of $\mathbf{F}_q(T)$, i.e., a quadratic extension where ∞ does not split. When $\gamma : A \to E$ has kernel (p(T)) where p(T) is a monic irreducible polynomial of degree d, we say that ϕ is of characteristic (p(T)). When ϕ is of characteristic (p(T)), we say that ϕ is 'supersingular' if

$$\phi_p(T) = \tau^{2d}.$$

From now on suppose that a rank 2 Drinfel'd module ϕ over C is given by

(1)
$$\phi_T = T + \lambda \tau + \tau^2,$$

where $\tau(a) = a^q$, has a complex multiplication by $\sqrt{p(T)}$, where p(T) is an irreducible polynomial in A. Then p(T) is either a polynomial of odd degree or a polynomial of even degree with leading coefficient in $\mathbf{F}_q - \mathbf{F}_q^2$. It is known ([H], p188) that we can find

(2)
$$\phi_{\sqrt{p(T)}} = \sqrt{p(T)} + a_1 \tau + a_2 \tau^2 \cdots + a_d \tau^d.$$

Since ϕ has complex multiplication, $j = \lambda^{q+1}$ is an algebraic integer and so is $\lambda([G], (4.3))$. Let $K = k(\sqrt{p(T)})$, L = K(j) and $\tilde{L} = K(\lambda)$. Let

Received June 28, 1990.

B and \widetilde{B} be the integral closures of *A* in *L* and \widetilde{L} , respectively. Then $\phi_T \in \widetilde{B}{\tau}$ and from

$$\phi_{\sqrt{p(T)}}\phi_T = \phi_T \phi_{\sqrt{p(T)}}$$

we have $\phi_{\sqrt{p(T)}}$ has coefficients in $\widetilde{B}([G], (3.3))$.

One natural question is 'For which prime ideal q of \tilde{B} is the reduced Drinfel'd module $\tilde{\phi}$ at q supersingular?'

In the following we will show that the reduction of ϕ at the prime ideal \mathfrak{p} of \widetilde{B} lying above (p(T)) is supersingular.

Let

$$\phi_{p(T)} = \sum_{i=0}^{2d} b_i \tau^i.$$

From (2) we get

(3)
$$b_i = \sum_{j=0}^i a_j a_{i-j}^{q^j}.$$

Here we let $a_0 = \sqrt{p(T)}$ and $a_j = 0$ for j > d.

LEMMA. For $j < \frac{d}{2}$, $a_j \equiv 0 \pmod{\mathfrak{p}}$.

Proof. We know that $b_i \equiv 0 \pmod{\mathfrak{p}}$ for i < d and $a_0 \equiv 0 \pmod{\mathfrak{p}}$. Assume that $a_k \equiv 0 \pmod{\mathfrak{p}}$ for $k < j < \frac{d}{2}$. Then

(4)
$$0 \equiv b_{2j} \equiv a_j^{q^j+1} + \sum_{\substack{k=0\\k\neq j}}^{2i} a_k a_{2j-k}^{q^k} \pmod{\mathfrak{p}}$$

For $k \neq j$, either k or 2j-k is less than j. Hence by induction hypothesis

$$a_j^{q^j+1} \equiv 0 \pmod{\mathfrak{p}}$$

and so

$$a_i \equiv 0 \pmod{\mathfrak{p}}$$

THEOREM. The reduced Drinfel'd module at p is supersingular.

Proof. It suffices to show that $b_d \equiv 0 \pmod{\mathfrak{p}}$ by the elementary properties of Drinfel'd modules. From (3), we get

(5)
$$b_d = \sum_{k=0}^d a_k a_{d-k}^{q^k}.$$

If d is odd, either k or d - k is less than $\frac{d}{2}$ for $k \leq d$. Therefore $b_d \equiv 0 \pmod{\mathfrak{p}}$ by the lemma. If d = 2m is even, let $\overline{\phi}$ and \overline{a}_i be the reductions modulo \mathfrak{p} . Then by the lemma,

$$\bar{\phi}_{\sqrt{p(T)}} = \bar{a}_m \tau^m + \bar{a}_{m+1} \tau^{m+1} + \dots + \bar{a}_{2m} \tau^{2m}$$
$$\bar{\phi}_T \bar{\phi}_{\sqrt{p(T)}} = \bar{a}_m \overline{T} \tau^m + \text{higher terms}$$
$$\bar{\phi}_{\sqrt{p(T)}} \bar{\phi}_T = \bar{a}_m \overline{T}^{q^m} \tau^m + \text{higher terms.}$$

Since $\bar{\phi}_{\sqrt{p(T)}}\bar{\phi}_T = \bar{\phi}_T\bar{\phi}_{\sqrt{p(T)}}$, we have $\bar{a}_m\overline{T} = \bar{a}_m\overline{T}^{q^m}$. Hence $a_m(T^{q^m} - T) \equiv 0 \pmod{\mathfrak{p}}.$

Suppose that $a_m \not\equiv 0 \pmod{\mathfrak{p}}$. Then $T^{q^m} - T \equiv 0 \pmod{\mathfrak{p}}$, which implies that p(T) divides $T^{q^m} - T$. But this is impossible because p(T) is irreducible polynomial of degree 2m. Therefore $a_m \equiv 0 \pmod{\mathfrak{p}}$ and (5) implies that

$$b_d = b_{2m} \equiv a_m^{q^m+1} \equiv 0 \pmod{\mathfrak{p}}.$$

COROLLARY. For every j < d, we have $a_j \equiv 0 \pmod{\mathfrak{p}}$

Proof. We know from the Theorem that $b_i \equiv 0 \pmod{\mathfrak{p}}$ for every i < 2d. Hence the proof of Lemma holds for j < d.

It is shown that if d is even (resp. odd), then there are $\frac{q^d-1}{q^2-1}$ (resp: $q \cdot \left(\frac{q^d-1}{q^2-1}\right) + 1$) supersingular j-invariants in characteristic (p(T)) ([G], (5.9)). One may ask, "For each supersingular j-invariant in characteristic (p(T)) does there exists a Drinfel'd module over C with complex multiplication by $\sqrt{p(T)}$ whose reduction at **p** has the given j-invariant?"

Sunghan Bae and Pyung-Lyun Kang

EXAMPLE. Let q = 3 and $p(T) = T^3 - T - 1$. Then

$$\phi_T = T + \sqrt{p(T)}(T^3 - T)\tau + \tau^2$$

has complex multiplication by $\sqrt{p(T)}$. In this case

$$\phi_{\sqrt{p(T)}} = \sqrt{p(T)} + (p(T)^2 - p(T))\tau + \sqrt{p(T)}(p(T) - 1)(p(T)(T^3 - T + 1)^2 - 1)\tau^2 + \tau^3.$$

Then the reduced Drinfel'd module is given by

$$\phi_T = \overline{T} + \tau^2,$$

so that the reduced j-invariant is 0.

References

- [G] Gekeler, E, Zur Arithmetik von Drinfel'd-Moduln, Math. Ann. 262 (1983), 167-182.
- [H] Hayes, D, Explicit class Field theory in Global Function Fields, Studies in Algebra and Number Theory (Rota, G.C., ed.), Academic Press, New York, 1979.

Department of Mathematics KAIST Taejon 305-701, Korea and Department of Mathematics Chungnam National University Taejon 305-764, Korea

30