CHANGE OF SCALE FORMULAS FOR YEH-WIENER INTEGRALS

IL YOO AND GOOG-JOONG YOON

1. Introductory Preliminaris

R.H. Cameron and D.A. Storvick's research [6] on the relationship between Wiener and Feynman integrals has led them to consider the problem of change of scale in Wiener integrals. In [5], they found change of scale formulas for Wiener integrals for a large class of functionals $S(L_2^{\nu}[a,b])$ wich was defined in [4]. Recently the first author [18] introduced the relationship between the Yeh-Wiener integral and the analytic Yeh-Feynman integral, and obtained change of scale formulas for Yeh-Wiener integrals which we now briefly review.

Let $C_2 = C_2(Q)$ denote Yeh-Wiener space, that is, the space of continuous functions x on $Q = [a, b] \times [c, d]$ such that x(a, t) = x(s, c) = 0 for all $(s, t) \in Q$ and let $C_2^{\nu} = \times_1^{\nu} C_2(Q)$. We shall say that two functionals $F(\vec{x})$ and $G(\vec{x})$ are equal s-almost everywhere (s - a.e.) if for each $\rho > 0$ the equation $F(\rho \vec{x}) = G(\rho \vec{x})$ holds for almost all $\vec{x} \in C_2^{\nu}$. For a rather detailed discussion of scale-invariant measurability and its relation with other topics, see [7,13].

Let $M = M(L_2^{\nu}(Q))$ be the class of complex measures of finite variation defined on $B(L_2^{\nu})$, the Borel class of $L_2^{\nu}(Q)$. The Banach algebra $S(L_2^{\nu}(Q))$ consists of all functionals F on C_2^{ν} expressible in the form

(1.1)
$$F(\vec{x}) = \int_{L_2^{\nu}} \exp\{i \sum_{k=1}^{\nu} \int_{Q} v_k(s,t) \widetilde{dx}_k(s,t)\} d\mu(\vec{v})$$

for s-a.e. $\vec{x} \in C_2^{\nu}$ and for some $\mu \in M$ where $\int_Q v_k(s,t) \widetilde{dx}_k(s,t)$ means the Paley-Wiener-Zygmund integral [1, 4, 8, 14, 17]. We note that the

Received June 19,1990. Revised January 9, 1991.

This study was supported by Yonsei University Faculty Research Grant for 1989.

correspondence $\mu \to F$ is one-one and carries convolution into pointwise multiplication. Moreover the analytic Yeh-Feynman integral exists for every F in $S(L_2^{\nu}(Q))$ and is given by the formula

(1.2)
$$\int_{C_2^{\nu}}^{\operatorname{any} f_q} F(\vec{x}) dx = \int_{L_2^{\nu}} \exp \left\{ \frac{1}{2qi} \sum_{k=1}^{\nu} \|v_k\|_2^2 \right\} d\mu(\vec{v}).$$

In order to state change of scale formulas for Yeh-Wiener integrals, we introduce the piecewise linear functions of two variables as approximators for $\vec{x} \in C_2^{\nu}(Q)$.

Let l and m be nonnegative integers and consider the division σ of $Q = [a, b] \times [c, d]$ into subrectangles by means of the partition

$$\sigma: a = s_0 < s_1 < \cdots < s_l = b, c = t_0 < t_1 < \cdots < t_m = d$$

For each $\vec{x} = (x^1, \dots, x^{\nu}) \in C_2^{\nu}(Q)$, we define the quadratic approximation $\vec{x}_{\sigma} = (x_{\sigma}^1, \dots, x_{\sigma}^{\nu})$ of \vec{x} based on σ by the formula

$$(1.3)$$

$$x_{\sigma}^{i}(s,t) = \frac{x^{i}(s_{j},t_{k}) - x^{i}(s_{j-1},t_{k}) - x^{i}(s_{j},t_{k-1}) + x^{i}(s_{j-1},t_{k-1})}{(s_{j} - s_{j-1})(t_{k} - t_{k-1})} \times (s - s_{j-1})(t - t_{k-1}) + \frac{x^{i}(s_{j},t_{k-1}) - x^{i}(s_{j-1},t_{k-1})}{s_{j} - s_{j-1}}(s - s_{j-1}) + \frac{x^{i}(s_{j-1},t_{k}) - x^{i}(s_{j-1},t_{k-1})}{t_{k} - t_{k-1}}(t - t_{k-1}) + x^{i}(s_{j-1},t_{k-1})$$

for $(s,t) \in [s_{j-1},s_j] \times [t_{k-1},t_k]$ for $j=1,\cdots,l,k=1,\cdots,m,$ and $i=l,\cdots,\nu.$

As mentioned before, we now introduce change of scale formulas for Yeh-Wiener integrals of elements in the Banach algebra $S(L_2^{\nu}(Q))$ [18].

THEOREM 1.1. Let $\rho > 0$ and let $\{\sigma_n\}$ be a sequence of subdivisions of Q such that the norm $\|\sigma_n\| \to 0$ as $n \to \infty$, and let $l_n m_n$ be the

number of subrectangles in σ_n , Then if $F \in S(L_2^{\nu}(Q))$.

$$\int_{C_2^{\nu}} F(\rho \vec{x}) d\vec{x}
= \lim_{n \to \infty} \rho^{-\nu l_n m_n} \int_{C_2^{\nu}} \exp \left\{ \frac{\rho^2 - 1}{2\rho^2} \int_{Q} \left\| \frac{\partial^2 \vec{x}_{\sigma_n}(s, t)}{\partial s \partial t} \right\|^2 ds dt \right\} F(\vec{x}) d\vec{x}$$

THEOREM 1.2. Let $\rho > 0$ and let $\{\psi_n\}$ be a complete orthonormal sequence of functions on Q. Then if $F \in S(L_2^{\nu}(Q))$,

$$\int_{C_2^{\nu}} F(\rho \vec{x}) d\vec{x}$$

$$= \lim_{n \to \infty} \rho^{-\nu n} \int_{C_2^{\nu}} \exp \left\{ \frac{\rho^2 - 1}{2\rho^2} \sum_{k=1}^{\nu} \sum_{j=1}^{n} \left[\int_{Q} \psi_j(s, t) d\vec{x}_k(s, t) \right]^2 \right\} F(\vec{x}) d\vec{x}$$

2. Formulas for Yeh-Wiener Integrals

In this section, we show that the Banach algebra $S(L_2^{\nu}(Q))$ of analytic Yeh-Feynman integrable functionals is not closed under the uniform convergence, and that change of scale formulas (1.4) and (1.5) for $S(L_2^{\nu}(Q))$ can be extended to the closure of $S(L_2^{\nu}(Q))$ under the uniform convergence scale-invariant almost everywhere.

PROPOSITION 2.1. $S(L_2^{\nu}(Q))$ is not closed under the uniform convergence.

Proof. Let $M(\mathcal{R}^{\nu})$ be the set of \mathcal{C} -valued countably additive Borel Measures on \mathbb{R}^{ν} , and let $\hat{M}(\mathcal{R}^{\nu})$ be the set of Fourier transforms of all elements in $M(\mathcal{R}^{\nu})$. By a paper of Hewitt [11], there exists a sequence ψ_n of elements in $\hat{M}(\mathbb{R}^{\nu})$ such that $\psi_n \to \psi$ uniformly, but $\psi \notin \hat{M}(\mathbb{R}^{\nu})$. Now we define the functionals F_n and F from $C_2^{\nu}(Q)$ to \mathcal{C} by

$$F_n(\vec{x}) = \psi_n(\vec{x}(b,d))$$
 and $F(\vec{x}) = \psi(\vec{x}(b,d)).$

Then from Theorem 3.1 in [15] it follows that $F_n \in S(L_2^{\nu}(Q))$ for $n = 1, 2, \dots$, but $F \notin S(L_2^{\nu}(Q))$. And also the fact that $\psi_n \to \psi$ uniformly implies $F_n \to F$ uniformly. Thus $S(L_2^{\nu}(Q))$ is not closed under the uniform convergence.

NOTATION. We shall denote the closure of $S(L_2^{\nu}(Q))$ under the uniform convergence s-a.e. by $\bar{S}^{u}(L_2^{\nu}(Q))$.

PROPOSITION 2.2. Let $\rho > 0$, let $\{\sigma_n\}$ by a sequence of subdivisions of Q such that the norm $\|\sigma_n\| \to 0$ an $n \to \infty$, and let $l_n m_n$ be the number of sub-rectangles in σ_n . Let Γ be the set of functionals F defined s-a.e. on C_2^{ν} such that F is bounded s-a.e. on C_2^{ν} and such that the equation (1.4) holds for F in the sense that both members exist and they are equal. Then Γ is closed with respect to uniform convergence s-a.e. on C_2^{ν}

Proof. Let F_q be a sequence of elements in Γ which converges to F uniformly s-a.e. on C_2^{ν} . Then there exist a positive number B and a subset Ω of C_2^{ν} with contains s-almost all of C_2^{ν} such that for all $\vec{x} \in \Omega$

$$|F_q(\vec{x})| \le B \text{ and } |F(\vec{x})| \le B,$$

and hence we obtain

(2.2)
$$\int_{C_2^{\nu}} F(\rho \vec{x}) d\vec{x} = \lim_{q \to \infty} \int_{C_2^{\nu}} F_q(\rho \vec{x}) d\vec{x}$$

By Proposition 2.3 in [18], we know that

(2.3)
$$\int_{C_2^{\nu}} \exp \left\{ \frac{\rho^2 - 1}{2\rho^2} \int_Q \left\| \frac{\partial^2 \vec{x}_{\sigma_n}(s, t)}{\partial s \partial t} \right\|^2 ds dt \right\} d\vec{x} = \rho^{\nu l_n m_n}.$$

Let
$$(2.4)$$

$$G_{n,q} = \rho^{-\nu l_n m_n} \int_{C_2^{\nu}} \exp\left\{\frac{\rho^2 - 1}{2\rho^2} \int_Q \left\|\frac{\partial^2 \vec{x}_{\sigma_n}(s,t)}{\partial s \partial t}\right\|^2 ds dt\right\} F_q(\vec{x}) d\vec{x}$$

and

$$(2.5) \ H_n = \rho^{-\nu l_n m_n} \int_{C_2^{\nu}} \exp\left\{ \frac{\rho^2 - 1}{2\rho^2} \int_Q \left\| \frac{\partial^2 \vec{x}_{\sigma_n}(s, t)}{\partial s \partial t} \right\|^2 ds dt \right\} F(\vec{x}) d\vec{x}$$

Then from (2.3), (2.4), (2.5) and the dominated conbergence theorem, we have that

$$\lim_{q \to \infty} G_{n,q} = H_n$$

for $n = 1, 2, \dots$, and that

$$\begin{aligned} &(2.7) \\ &|G_{n,q} - H_n| \\ &\leq \rho^{-\nu l_n m_n} \int_{C_2^{\nu}} \exp\left\{\frac{\rho^2 - 1}{2\rho^2} \int_{Q} \left\|\frac{\partial^2 \vec{x}_{\sigma_n}(s,t)}{\partial s \partial t}\right\|^2 ds dt\right\} |F_q(\vec{x}) - F(\vec{x})| d\vec{x} \\ &\leq \sup_{x \in \Omega} |F_q(\vec{x}) - F(\vec{x})|. \end{aligned}$$

Thus (2.6) holds uniformly in n for all positive integers n, and hence for $q = 1, 2, \dots$,

(2.8)
$$I_q \equiv \int_{C_2^r} F(\rho \vec{x}) d\vec{x} = \lim_{n \to \infty} G_{n,q}$$

and

(2.9)
$$I \equiv \int_{C_2^r} F(\rho \vec{x}) d\vec{x} = \lim_{q \to \infty} I_q = \lim_{q \to \infty} \lim_{n \to \infty} G_{n,q}$$

By the iterated limits theorem, it follows from (2.8) and (2.9) that

$$I = \lim_{q \to \infty} \lim_{n \to \infty} G_{n,q} = \lim_{n \to \infty} \lim_{q \to \infty} G_{n,q} = \lim_{n \to \infty} H_n.$$

THEOREM 2.3. Let $\rho > 0$ and let $\{\sigma_n\}$ be a sequence of subdivions of Q such that the norm $\|\sigma_n\| \to 0$ as $n \to \infty$, and let $l_n m_n$ be the number of sub-rectangles in σ_n . Then if $F \in \bar{S}^u(L_2^\nu(Q))$,

$$(2.10)$$

$$\int_{C_2^{\nu}} F(\rho \vec{x}) d\vec{x}$$

$$= \lim_{n \to \infty} \rho^{-\nu l_n m_n} \int_{C_2^{\nu}} \exp \left\{ \frac{\rho^2 - 1}{2\rho^2} \int_{Q} \left\| \frac{\partial^2 \vec{x}_{\sigma_n}(s, t)}{\partial s \partial t} \right\|^2 ds dt \right\} F(\vec{x}) d\vec{x}.$$

Proof. By Theorem 1.1 and Proposition 2.2, we have that $S(L_2^{\nu}(Q)) \subset \Gamma$ and hence that $\bar{S}^{u}(L_2^{\nu})(Q) \subset \Gamma$.

The following theorem can be obtained by extending Theorem 1.2 in the same way that Theorem 2.3 was obtained by extending Theorem 1.1

THEORM 2.4. Let $\rho > 0$ and let $\{\psi_n\}$ be a complete orthonormal sequence of functions on Q. Then if $F \in \bar{S}^u(L_2^{\nu}(Q))$,

(2.11)
$$\int_{C_2^{\nu}} F(\rho \vec{x}) c \vec{x}$$

$$= \lim_{n \to \infty} \rho^{-\nu n} \int_{C_2^{\nu}} \exp \left\{ \frac{\rho^2 - 1}{2\rho^2} \sum_{k=1}^{\nu} \sum_{j=1}^{n} \left[\int_{Q} \psi_j(s, t) d\vec{x}_k(s, t) \right]^2 \right\} F(\vec{x}) d\vec{x}.$$

REMARK 2.5. Using extensions of the techniques developed in this paper, we can formulate the counterparts for N-parameter Wiener space.

EXAMPLE. We let $\nu=1$ and $[a,b]=[c,d]=[0,\pi]$ and define $\psi_j(s)=\sin js$ for $j=1,2,\cdots$. Then $\{\psi_{j,k}(s,t)=\psi_j(s)\psi_k(t)\}$ is a complete orthonormal set on $Q=[0,\pi]\times[0,\pi]$. Define the functional $F:C_2(Q)\longrightarrow \mathcal{C}$ by

$$F(x) = \exp \left\{ \alpha \int_{Q} x(s,t) \cos s \cos t ds dt \right\}$$

for $x \in C_2(Q)$ where α is a real or complex number. We now use the $\{\psi_{j,k}\}$ and F, and evaluate the two sides of (2.11). By using integration by parts formula and the Paley-Wiener-Zygmund theorem, we obtain

$$\int_{C_2} F(\rho x) dx = \int_{C_2} \exp\{\frac{\alpha \rho \pi}{2} \int_{Q} \psi_{1,1}(s,t) dx(s,t)\} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\{\frac{\alpha \rho \pi}{2} u\} \exp\{-u^2/2\} du = \exp\{(\alpha \rho \pi)^2/8\}.$$

On the other hand, we apply the Paley-Wiener-Zygmund theorem to the right side of (2.11) so that

$$\lim_{l,m\to\infty} \rho^{-lm} \int_{C_2} \exp\left\{\frac{\rho^2 - 1}{2\rho^2} \sum_{j=1}^l \sum_{k=1}^m \left[\int_Q \psi_{j,k}(s,t) \widetilde{dx}(s,t) \right] \right\}^2 F(x) dx$$

$$= \lim_{l,m\to\infty} (2\pi)^{-\frac{lm}{2}} \int_{\mathbb{R}^{lm}} \exp\left\{\frac{\rho^2 - 1}{2\rho^2} \sum_{j=1}^l \sum_{k=1}^m u_{j,k}^2 \right\} \exp\left\{\frac{\alpha\pi}{2} u_{1,1}\right\}$$

$$\exp\left\{-\frac{1}{2} \sum_{j=1}^l \sum_{k=1}^m u_{j,k}^2 \right\} du_{1,1} \cdots du_{l,m} = \exp\{(\alpha\rho\pi)^2/8\}.$$

Thus we have established that the equation (2.11) is valid for all complex number α . In particular, if α is pure imaginary, then $F(x) \in S(L_2(Q))$. On the other hand, if $Re\alpha \neq 0$, then F(x) is unbounded, so $F(x) \notin \bar{S}^u(L_2(Q))$, and also $F(x) \notin \bar{S}^u(L_2(Q))$. Thus this example shows that the class of functionals for which (2.11) holds is more extensive than $\bar{S}^u(L_2^{\nu}(Q))$.

References

- J.M. Ahn K.S. Chang and I Yoo, Some Banach Algebras of Yeh-Feynman Integrable Functionals, J. Korean Math. Soc. 24 (1987), 257-266.
- S. Albeverio and R. Hφegh-krohn, Mathematical Theory of Feynman Path Integrals, Springer Lecture Notes in Math. 523, 1976.
- 3. E. Berkson and T.A. Gillespie, Absolutely Continuous Functions of Two Variables and Well-Bounded Operators, J. London Math. Soc. 30 (1984), 305-321.

- 4. R.H. Cameron and D.A. Storvick, Some Bananch Algebras of Analytic Feynman Integrable Functionals, Springer Lecture Notes in Math. 798, 1980.
- 5. _____, Change of Scale Formulas for Wiener Integrals, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie 2-Numero 17 (1987), 105-116.
- Relationship between the Wiener Integral and the analytic Feynman jIntegral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie 2-Numero 17 (1987), 117-133.
- K.S. Chang, Scale-Invariant Measurability in Yeh-Wiener Spaces, Korean Math. Soc. 19 (1982), 61-67.
- 8. K.S. Chang, J.M. Ahn and J.S., Chang Notes on the Analytic Yeh-Feynman Integrable Functionals, Rocky Mountain J. Math. 18 (988), 157-165.
- K.S. Chang G.W. Johnson and D.L. Skoug, Necessary and Sufficient Conditions for Membership in the Banach Algebra S for Certain Classes of Functions, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Seire 2-Numero 17 (1987), 153-171.
- R.P. Feynman, Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. Mod. Phys. 20 (1948), 367-387.
- 11. E. Hewitt, Representation of Functions as Absouldtely Convergent Fourier-Stieltjes Transforms, Proc. Amer. Math. Soc. 4 (1953), 663-670.
- 12. E.W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series Vol I, Dover New York, 1957.
- 13. G.W. Johnson and D.L. Skoug, Scale-Invariant Measurability in Wiener Space, Pacific J. Math. 83 (1979), 157-176.
- 14. C. Park, A Generalized Paley-Wiener-Zygmund Integral and its Applications, Proc. Amer. Math. Soc. 23 (1969), 388-400.
- 15. Y.H. Park, Operator Valued function Space Integrals, Thesis Yonsei Univ., 1988.
- J. Yeh, Wiener Measure in a Space of Functions of Two Variables, Trans. Amer. Math. Soc. 95 (1960), 433-450.
- 17. J. Yeh, Stoctastic Processes and the Wiener Integral, Marcel Dekker New York, 1973.
- 18. I Yoo, Sequential Yeh-Feynman Integrals, Thesis Yonsei Univ. 1986.

Department of Mathematics Yonsei University Wonju 222-701, Korea and Department of Mathematics Mokpo National University Mokpo 534-729, Korea