Comm. Korean Math. Soc. 6(1991), No. 1, pp. 13-18

A CLASS OF BCH-ALGEBRAS

J.W. Nam, S.M. Hong and Y.B. Jun

In 1986, K. Iséki[6] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. In [4] and [5], Q.P. Hu and Xin Li discussed the BCH -algebra. The notion of BCH -algebras generalizes the notion of BCI -algebras in the sense that every BCI -algebra is a BCH algebra, but not vice versa(see[5]). Changchang Xi[8] discussed the BCIalgebra satisfying $(s * y) * z \leq x *(y * z)$. In this paper, we investigate some properties of BCH -algebras and study the BCH -algebra satisfying $(x * y) * z \leq x *(y * z)$ for all x, y, z in the algebra, which is called a quasi-associative BCH -algebra.

Let us recall definitions.
Definition 1. A BCI-algebra is an abstract algebra ($X ; *, 0$) of type $(2,0)$ with the following conditions:
(1) $((x * y) *(x * z)) *(z * y)=0$,
(2) $(x *(x * y)) * y=0$,
(3) $x * x=0$,
(4) $x * y=y * x=0$ implies $x=y$,
(5) $x * 0=0$ implies $x=0$,
for all $x, y, z \in X$.
Definition 2. A BCH-algebra is an algebra ($X ; *, 0$) of type (2,0) satisfying the following conditions: for every $x, y, z \in X$,
(3) $x * x=0$,
(4) $x * y=y * x=0$ implies $x=y$,
(6) $(x * y) * z=(x * z) * y$.

We will use the symbol " \leq " defined by $x \leq y$ if and only if $x * y=0$ for all $x, y \in X$.

A BCH-algebra has the following basic properties (for the proofs, see [4] and [5]) :

Received May 14, 1990.
(2) $(x *(x * y)) * y=0$,
(5) $x * 0=0$ implies $x=0$,
(7) $x * 0=x$.

First of all, we give some examples of quasi-associative BCH-algebras.
EXAMPLE 1. Every quasi-associative BCI -algebra is a quasi-associative BCH-algebra.

Example 2. Any BCI-algebra with weak unit is a quasi-associative BCH-algebra.

Example 3. Let $X=\{0,1,2,3\}$ and the operation $*$ given as follows:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	2	0	0	2
3	3	0	0	0

Then $(X ; *, 0)$ is a (proper) BCH-algebra (see [4]), and it is quasiassociative but not associative.

Example 4. Let $X=\{0,1,2,3\}$ and the operation * given as follows:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	3	0	3
3	3	0	0	0

Then X is a (proper) BCH-algebra (see [4]), and it is quasi-associative but not associative.

Proposition 1. In a BCH-algebra X, we have

$$
x * y \leq z \text { implies } x * z \leq y
$$

for all $x, y, z \in X$.
Proof. It is obvious by (6).

Theorem 1. If a BCH -algebra X astisfies the condition
(I) $x \leq y$ implies $z * y \leq z * x$ for all $x, y, z \in X$,
then X is a partially ordered set with respect to \leq.
Proof. By (3) and (4), we only prove that

$$
x \leq y, y \leq z \text { imply } x \leq z
$$

In fact, asume that $x \leq y$ and $y \leq z$, then by (1), we have $x * z \leq x * y=0$. It follows from (5) that $x * z=0$, that is, $x \leq z$, which completes the proof.

Lemma 1 ([7]). Let X be an abstract algebra of type $(2,0)$ with a binary operation * and a constant 0 . Then X is a $B C I$-algebra if and only if it satisfies the following conditions:
(1) $((x * y) *(x * z)) *(z * y)=0$,
(4) $x * y=y * x=0$ implies $x=y$,
(7) $x * 0=x$,
all $x, y, z \in X$.
Theorem 2. A BCH-algebra X is a $B C I$-algebra if and only if it satisfies

$$
\text { (II) } x \leq y \text { implies } x * z \leq y * z \text { for all } x, y, z \in X \text {. }
$$

Proof. Necessity is clear. Let X be a BCH -algebra satisfying (II). By Lemma 1, we only prove (1). In fact, we know that

$$
\begin{aligned}
& ((x * y) *(x * z)) *(z * y) \\
& ((x *(x * z)) * y) *(z * y) \\
\leq & \text { by (6) } \\
\leq & (z * y) *(z * y) \\
= & 0 .
\end{aligned}
$$

It follows from (5) that $((x * y) *(x * z)) *(z * y)=0$ for all $x, y, z \in X$. This completes the proof.

Following [8] we have

Corollary 1. If a $B C H$-algebra X satisfies the condition (II), then $0 * x \leq x$ if and only if $0 * x=0 *(0 * x)$ for all $x \in X$.

Following [2], [3], [6] and [8], we have
Corollary 2. If a BCH-algebra X satisfies the condition (II), then we have the following:
(a) $x * y \geq 0$ implies $y * x \geq 0$,
(b) $((x * y) * z)(x *(y * z)) \leq(0 * z) * z$,
(c) $(y * x) *(z * x) \leq y * z$,
(d) $((x * y) * z) *(u * z) \leq(x * u) * y$,
(e) $((x * y) * z) *((x * u) * y) \leq u * z$,
(f) $(x * y) *(z * u) \leq x *(z *(u * y))$,
(g) $(x * y) *(x *(z *(u * y))) \leq z * u$,
(h) $x *(x *(x * z))=x * z$,
(i) $(a *(x * y)) *(y * x) \leq a$,
(j) $0 *(x * y)=(0 * x) *(0 * y)$,
(k) $0 *(0 *(0 * x))=0 * x$.

Proposition 2. If a BCH-algebra X satisfies the condition (II), then X also satisfies the condition (I).

Proof. Assume that $x \leq y$. Then we have

$$
\begin{aligned}
(z * y) *(z * x) & =(z *(z * x)) * y & & \text { by (6) } \\
& \leq x * y & & \text { by (2) and (II) } \\
& =0 . & &
\end{aligned}
$$

It follwos from (5) that $(z * y) *(z * x)=0$, that is, $z * y \leq z * x$ which proves (I).

Remarks. 1. Proposition 2 is also an immediate consequence of Theorem 2 and [3; Lemma 1.6].
2. It does not hold in general that $(I) \Rightarrow(I I)$ because, in Example 3, X satisfies (I) but not (II).

Combining Theorem 1 and Proposition 2, we have
Corollary 3. If a BCH-algebra X satisfies the condition (II), then X is a partially ordered set with respect to \leq.

Proposition 3. If X is a quasi-associative BCH-algebra, then $0 * x=$ $0 *(0 * x)$ for all $x \in X$.

Proof. Assume that X is quasi-associative. Then we have

$$
0 * x=(0 * 0) * x \leq 0 *(0 * x)
$$

for all $x \in X$. On the other hand, we also have

$$
\begin{aligned}
(0 *(0 * x)) *(0 * x) & \leq 0 *((0 * x) *(0 * x)) \\
& =0 * 0=0
\end{aligned}
$$

It follows from (5) that $(0 *(0 * x)) *(0 * x)=0$, which means $0 *(0 * x) \leq$ $0 * x$. Hence we have $0 * x=0 *(0 * x)$ for all $x \in X$.

From Theorem 2 and [8 ; Theorem 3] we have
Theorem 3. Lex X be a $B C H$-algebbra satisfying the condition (II). Then the following are equivalent:
(i) X is quasi-associative,
(ii) $0 * x \leq x$,
(iii) $0 *(x * y)=0 *(y * x)$,
(iv) $(0 * x) * y=0 *(x * y)$,
(v) $(x * y) *(y * x) \geq 0$,
for all $x, y \in X$.
Lemma 2 ([4; Lemma 4]). Let X and Y be $B C H$-algebras and let

$$
X \oplus Y=\{(x, y) \mid x \in X, y \in Y\}
$$

We define the composition * on $X \oplus Y$ by

$$
(x, y) *\left(x^{\prime}, y^{\prime}\right)=\left(x * x^{\prime}, y * y^{\prime}\right)
$$

for all $(x, y),\left(x^{\prime}, y^{\prime}\right) \in X \oplus Y$. Then $(X \oplus Y ; *,(0,0))$ is a $B C H$-algebra, which is called the direct sum of X and Y.

We can easily extend this construction to any family of BCH -algebras. Let $\left(X_{j}\right)_{j \in J}$ be a family of BCH-algebras indexed by J. We define the direct sum $\oplus_{j \in J} X_{j}$ of BCH -algebras $X_{j}, j \in J$, as follows: an element of $\oplus_{j \in J} X_{j}$ is a family of $\left(x_{j}\right)_{j \in J}$ with $x_{j} \in X_{j}$ and $x_{j} \neq 0$ for only a finite number of subscripts. The composition $*$ is defined by

$$
\left(x_{j}\right)_{j \in J} *\left(y_{j}\right)_{j \in J}=\left(x_{j} * y_{j}\right)_{j \in J}
$$

Theorem 4. If X and Y are quasi-associative BCH-algebras, then the direct sum $X \oplus Y$ is also quasi-associative.

Proof. We have that for every $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in X \oplus Y$,

$$
\begin{aligned}
& \left(\left((x, y) *\left(x^{\prime}, y^{\prime}\right)\right) *\left(x^{\prime \prime}, y^{\prime \prime}\right)\right) *\left((x, y) *\left(\left(x^{\prime}, y^{\prime}\right) *\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)\right) \\
& =\left(\left(x * x^{\prime}, y * y^{\prime}\right) *\left(x^{\prime \prime}, y^{\prime \prime}\right)\right) *\left((x, y) *\left(x^{\prime} * x^{\prime \prime}, y^{\prime} * y^{\prime \prime}\right)\right) \\
& =\left(\left(x * x^{\prime}\right) * x^{\prime \prime},\left(y * y^{\prime}\right) * y^{\prime \prime}\right) *\left(x *\left(x^{\prime} * x^{\prime \prime}\right), y *\left(y^{\prime} * y^{\prime \prime}\right)\right) \\
& =\left(\left(\left(x * x^{\prime}\right) * x^{\prime \prime}\right) *\left(x *\left(x^{\prime} * x^{\prime \prime}\right)\right),\left(\left(y * y^{\prime}\right) * y^{\prime \prime}\right) *\left(y *\left(y^{\prime} * y^{\prime \prime}\right)\right)\right) \\
& =(0,0) .
\end{aligned}
$$

This means that

$$
\left((x, u) *\left(x^{\prime}, y^{\prime}\right)\right) *\left(x^{\prime \prime}, y^{\prime \prime}\right) \leq(x, y) *\left(\left(x^{\prime}, y^{\prime}\right) *\left(x^{\prime \prime}, y^{\prime \prime}\right)\right.
$$

proving that $X \oplus Y$ is quasi-associative,
Corollary 4. If $\left(X_{j}\right)_{j \in J}$ is a family of quasi-associative BCH -algebras, then so is $\oplus_{j \in J} X_{j}$.

References

1. M.A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japonica 35 (1990), 141- 151.
2. C.S. Hoo, Quasi-commutative BCI-algebras, Math. Japonica 33 (1988), $49-56$.
3. C.S. Hoo and P.V. Ramana Murty, Quasi-commutative p-semisimple BCI-algebras, Math. Japonica 32 (1987), 889-894.
4. Q.P. Hu and Xin Li, On BCH-algebras, Math. Sem. Notes 11 (1983), 313-320.
5.
6. K. Iséki, An algebra related with a propositional caluclus, Proc. Japan Acad. 42 (1966), 26 - 29.
7. Li Hui Shi, An axiom system of BCI-algebras, Math. Japonica 30 (1985), 351 352.
8. Changchang Xi, On a class of BCI-algebras, Math. Japonica 35 (1990), 13-17.

Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea

