Comm. Korean Math. Soc. 6(1991), No. 1, pp. 13-18

A CLASS OF BCH-ALGEBRAS

J.W. NAM, S.M. HONG AND Y.B. JUN

In 1986, K. Iséki[6] introduced the notion of a BCI-algebra which is a generalization of a BCK-algebra. In [4] and [5], Q.P. Hu and Xin Li discussed the BCH-algebra. The notion of BCH-algebras generalizes the notion of BCI-algebras in the sense that every BCI-algebra is a BCHalgebra, but not vice versa(see[5]). Changchang Xi[8] discussed the BCIalgebra satisfying $(s * y) * z \le x * (y * z)$. In this paper, we investigate some properties of BCH-algebras and study the BCH-algebra satisfying $(x * y) * z \le x * (y * z)$ for all x, y, z in the algebra, which is called a quasi-associative BCH-algebra.

Let us recall definitions.

DEFINITION 1. A BCI-algebra is an abstract algebra (X; *, 0) of type (2,0) with the following conditions:

(1) ((x * y) * (x * z)) * (z * y) = 0, (2) (x * (x * y)) * y = 0, (3) x * x = 0, (4) x * y = y * x = 0 implies x = y, (5) x * 0 = 0 implies x = 0, for all $x, y, z \in X$.

DEFINITION 2. A BCH-algebra is an algebra (X; *, 0) of type (2,0) satisfying the following conditions: for every $x, y, z \in X$,

(3) x * x = 0, (4) x * y = y * x = 0 implies x = y, (6) (x * y) * z = (x * z) * y.

We will use the symbol " \leq " defined by $x \leq y$ if and only if x * y = 0 for all $x, y \in X$.

A BCH-algebra has the following basic properties (for the proofs, see [4] and [5]):

Received May 14, 1990.

(2) (x * (x * y)) * y = 0,(5) x * 0 = 0 implies x = 0,(7) x * 0 = x.

First of all, we give some examples of quasi-associative BCH-algebras.

EXAMPLE 1. Every quasi-associative BCI-algebra is a quasi-associative BCH-algebra.

EXAMPLE 2. Any BCI-algebra with weak unit is a quasi-associative BCH-algebra.

EXAMPLE 3. Let $X = \{0, 1, 2, 3\}$ and the operation * given as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	3	3
2	2	0	0	2
3	3	0	0	0

Then (X;*,0) is a (proper) BCH-algebra (see [4]), and it is quasiassociative but not associative.

EXAMPLE 4. Let $X = \{0, 1, 2, 3\}$ and the operation * given as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	1
2	2	3	0	3
3	3	0	0	0

Then X is a (proper) BCH-algebra (see [4]), and it is quasi-associative but not associative.

PROPOSITION 1. In a BCH-algebra X, we have

 $x * y \leq z$ implies $x * z \leq y$,

for all $x, y, z \in X$.

Proof. It is obvious by (6).

THEOREM 1. If a BCH-algebra X astisfies the condition

(I) $x \leq y$ implies $z * y \leq z * x$ for all $x, y, z \in X$,

then X is a partially ordered set with respect to \leq .

Proof. By (3) and (4), we only prove that

$$x \leq y, y \leq z \text{ imply } x \leq z.$$

In fact, asume that $x \leq y$ and $y \leq z$, then by (1), we have $x * z \leq x * y = 0$. It follows from (5) that x * z = 0, that is, $x \leq z$, which completes the proof.

LEMMA 1 ([7]). Let X be an abstract algebra of type (2,0) with a binary operation * and a constant 0. Then X is a BCI-algebra if and only if it satisfies the following conditions:

(1) ((x * y) * (x * z)) * (z * y) = 0, (4) x * y = y * x = 0 implies x = y, (7) x * 0 = x, all $x, y, z \in X$.

THEOREM 2. A BCH-algebra X is a BCI-algebra if and only if it satisfies

(II)
$$x \leq y$$
 implies $x * z \leq y * z$ for all $x, y, z \in X$.

Proof. Necessity is clear. Let X be a BCH-algebra satisfying (II). By Lemma 1, we only prove (1). In fact, we know that

$$((x * y) * (x * z)) * (z * y)$$

=((x * (x * z)) * y) * (z * y) by (6)
 \leq (z * y) * (z * y) by (2) and (II)
=0. by (3)

It follows from (5) that ((x * y) * (x * z)) * (z * y) = 0 for all $x, y, z \in X$. This completes the proof.

Following [8] we have

COROLLARY 1. If a BCH-algebra X satisfies the condition (II), then $0 * x \le x$ if and only if 0 * x = 0 * (0 * x) for all $x \in X$.

Following [2], [3], [6] and [8], we have

COROLLARY 2. If a BCH-algebra X satisfies the condition (II), then we have the following:

(a)
$$x * y \ge 0$$
 implies $y * x \ge 0$,
(b) $((x * y) * z)(x * (y * z)) \le (0 * z) * z$,
(c) $(y * x) * (z * x) \le y * z$,
(d) $((x * y) * z) * (u * z) \le (x * u) * y$,
(e) $((x * y) * z) * ((x * u) * y) \le u * z$,
(f) $(x * y) * (z * u) \le x * (z * (u * y))$,
(g) $(x * y) * (x * (z * (u * y))) \le z * u$,
(h) $x * (x * (x * z)) = x * z$,
(i) $(a * (x * y)) * (y * x) \le a$,
(j) $0 * (x * y) = (0 * x) * (0 * y)$,
(k) $0 * (0 * (0 * x)) = 0 * x$.

PROPOSITION 2. If a BCH-algebra X satisfies the condition (II), then X also satisfies the condition (I).

Proof. Assume that $x \leq y$. Then we have

$$(z * y) * (z * x) = (z * (z * x)) * y$$
 by (6)
 $\leq x * y$ by (2) and (II)
 $= 0.$

It follows from (5) that (z * y) * (z * x) = 0, that is, $z * y \le z * x$ which proves (I).

REMARKS. 1. Proposition 2 is also an immediate consequence of Theorem 2 and [3; Lemma 1.6].

2. It does not hold in general that $(I) \Rightarrow (II)$ because, in Example 3, X satisfies (I) but not (II).

Combining Theorem 1 and Proposition 2, we have

COROLLARY 3. If a BCH-algebra X satisfies the condition (II), then X is a partially ordered set with respect to \leq .

16

PROPOSITION 3. If X is a quasi-associative BCH-algebra, then 0 * x = 0 * (0 * x) for all $x \in X$.

Proof. Assume that X is quasi-associative. Then we have

 $0 * x = (0 * 0) * x \le 0 * (0 * x)$

for all $x \in X$. On the other hand, we also have

$$(0*(0*x))*(0*x) \le 0*((0*x)*(0*x)) \\ = 0*0 = 0.$$

It follows from (5) that (0*(0*x))*(0*x) = 0, which means $0*(0*x) \le 0*x$. Hence we have 0*x = 0*(0*x) for all $x \in X$.

From Theorem 2 and [8; Theorem 3] we have

THEOREM 3. Lex X be a BCH-algebbra satisfying the condition (II). Then the following are equivalent:

(i) X is quasi-associative, (ii) $0 * x \le x$, (iii) 0 * (x * y) = 0 * (y * x), (iv) (0 * x) * y = 0 * (x * y), (v) $(x * y) * (y * x) \ge 0$, for all $x, y \in X$.

LEMMA 2 ([4; LEMMA 4]). Let X and Y be BCH-algebras and let

$$X \oplus Y = \{(x, y) | x \in X, y \in Y\}.$$

We define the composition * on $X \oplus Y$ by

$$(x, y) * (x', y') = (x * x', y * y')$$

for all $(x, y), (x', y') \in X \oplus Y$. Then $(X \oplus Y; *, (0, 0))$ is a BCH-algebra, which is called the direct sum of X and Y.

We can easily extend this construction to any family of BCH-algebras. Let $(X_j)_{j\in J}$ be a family of BCH-algebras indexed by J. We define the direct sum $\bigoplus_{j\in J}X_j$ of BCH-algebras $X_j, j \in J$, as follows: an element of $\bigoplus_{j\in J}X_j$ is a family of $(x_j)_{j\in J}$ with $x_j \in X_j$ and $x_j \neq 0$ for only a finite number of subscripts. The composition * is defined by

$$(x_j)_{j\in J} * (y_j)_{j\in J} = (x_j * y_j)_{j\in J}.$$

THEOREM 4. If X and Y are quasi-associative BCH-algebras, then the direct sum $X \oplus Y$ is also quasi-associative.

Proof. We have that for every $(x, y), (x', y'), (x'', y'') \in X \oplus Y$,

$$\begin{aligned} &(((x,y)*(x',y'))*(x'',y''))*((x,y)*((x',y')*(x'',y''))) \\ &= ((x*x',y*y')*(x'',y''))*((x,y)*(x'*x'',y'*y'')) \\ &= ((x*x')*x'',(y*y')*y'')*(x*(x'*x''),y*(y'*y'')) \\ &= (((x*x')*x'')*(x*(x'*x'')),((y*y')*y'')*(y*(y'*y''))) \\ &= (0,0). \end{aligned}$$

This means that

$$((x, u) * (x', y')) * (x'', y'') \le (x, y) * ((x', y') * (x'', y''),$$

proving that $X \oplus Y$ is quasi-associative,

COROLLARY 4. If $(X_j)_{j \in J}$ is a family of quasi-associative BCH-algebras, then so is $\bigoplus_{j \in J} X_j$.

References

- M.A. Chaudhry, Weakly positive implicative and weakly implicative BCI-algebras, Math. Japonica 35 (1990), 141-151.
- 2. C.S. Hoo, Quasi-commutative BCI-algebras, Math. Japonica 33 (1988), 49 56.
- C.S. Hoo and P.V. Ramana Murty, Quasi-commutative p-semisimple BCI-algebras, Math. Japonica 32 (1987), 889 - 894.
- 4. Q.P. Hu and Xin Li, On BCH-algebras, Math. Sem. Notes 11 (1983), 313 320.
- 5. ____, On proper BCH-algebras, Math. Japonica 30 (1985), 659 661.
- 6. K. Iséki, An algebra related with a propositional caluclus, Proc. Japan Acad.42 (1966), 26 29.
- Li Hui Shi, An axiom system of BCI-algebras, Math. Japonica 30 (1985), 351 352.
- 8. Changchang Xi, On a class of BCI-algebras, Math. Japonica 35 (1990), 13-17.

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea

18