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DEVELOPMENT OF SINGULARITIES

FOR A SINGLE QUASI-LINEAR EQUATION

K. H. KWON I , S. H. YOOI AND D. KIM 2

1. Discontinuities in the solution of quasi-linear equations
with smooth initial data

Let f : RI -+ RI be a C2 function. In this paper, we treat the
following quasi-linear equation with initial data;

(IVP) {
ut+f(u)x=O, xER, t>O
u(x,O)=uo(x), xER,

where 1£0 is a given real valued function on RI, and 1£ = u(x, t) is to be
found on the upper half plane t 2: 0. We know that 1£(x, t) is constant

along any characteristic line x = x(t) with speed : = ~ f( 1£), and that

the characteristic line is a straight one. Hence it can be given implicitly
by the formula

d
u(x, t) = uo(x(t) - t du f(uo(e))),

if the characteristic line passing through (x, t) meets with initial line
t = °at (e,O) (see [2]). If 1£0 E CI(R), by the implicit function theorem,
we can solve (IVP) locally for sufficiently small t > 0. Indeed, if we let
F(x, t, 1£) = 1£ - uo(x - f'(u)t) then

of , "( ) uffi .01£ = 1 + tUof 1£ =1= °for s clently small t.
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Also, we have
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(1.1)
u~f'(uo({» u~

Ut = -1 + U~f"(uo(e»t and Ux = 1 + u~f"(uo(e))t '

where u(x,t) = uo(x(t) - f'(uo(O)t). IT there exist two characteristic
lines issuing from two distinct points in the initial line t = °so that they
meet at a certain positive time t > 0, then the solution u(x, t) must be a
multivalued function since u is constant along characteristics. Now, we
extract the condition for global solution to exist.

THEOREM 1. If d~[:uf(uo(x»]~ °for any x E R, then there exists

a unique solution u(x,t) E CI(R x (0,00» for (IVP).

d d
Proof. Assume that dx[duf(uo(x»] ;::: 0, for any x E R. Then

~ f( uo(x» is an increasing function of x E R. This means that for
any Xl < X2,

d d
du f(uo(xd) ~ du f(UO(X2»'

Since :Uf(uO(x i» (i = 1,2) is the speed of characteristic line issuing

from Xi, the two lines can not meet at any point (x, t). Note that on
each characteristic line, u is determined uniquely by its initial value.
This proves the theorem.

COROLLARY 1. Assume that Uo E Cl and f E C2. Then there is a
global solution u(x,t) E CI(R x (0,00» if and only if

d d
dx [duf(uo(x»] ;::: °for any x E R.

Proof. By Theorem 1, the necessary part was proved. Conversely,

assume that u(x,t) E CI(R x (0,00» is a solution for (IVP). IT ~

[~f(uo(xo»] < °for some x'o, by continuity, there exists an interval

(a, b) containing Xo such that it holds for any x E (a, b). Let a < Xl <
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X2 < b. Since d~f(uo(Xi»(i = 1,2) is the speed of the characteristic

lines issuing from Xi, respectively, and u(x, t) E CI(R x (0,00)), we have

Hence

d d d d
duf(uo(xd) - duf(uo(x2)) = dX[duf(uo(x))], (Xl - xz) ~ 0,

where Xl < X < X2' This leads to a contradiction.

Assume that f is purely nonlinear, i.e., f"(u) i= 0 for all u E R. Since
f"(u) E CO(R), f"(U) > 0 for all u E R or f"(U) < 0 for all u E R. If
u(x,t) is a global solution, by Corollary 1, u~(x) 2:: 0 for any x E R if
f" > O. Physically, u(x, t) usually denotes the density of a stuff, but we
have If: uo(x)dxl = +00 unless uo(x) == 0,

which is not realistic. Therefore, by assuming f" i= 0 in any realistic
physical problem, we can not expect a global Cl solution of the initial
value problem (IVP) because any physically acceptable system does not
permit the total density of the stuff in the system to be infinite.

THEOREM 2. H B = inf dd [dd f( uo(x))] < 0 then there exists a
r X u

unique solution u(x, t) E CI(R x (0, -;;)) for (IVP). After the time

T = - ~, u(x, t) can not be continued as a single valued solution.

Proof. Assume that -00 < B = inf dd [dd f(uo(x»] < O. We shall
r x u

first show that any two characteristics starting from two distinct points
on x-axis won't cross each other for 0 ~ t < T }]. Let Xl and X2 be any
two points in the x-axis such that Xl < X2. Let It and 12 be characteristic
lines pathing through (XI, 0) and (X2, 0). Then

{
11 : x = 1.,J(uo(xd)t + xI.

(1.2)
12 : X = d~f(uo(X2)t + x2'
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(1.3)

IT It intersects 12 somewhere in the upper half plane t > 0, then we must
have

{
l",!(UO(XI)) > l",!(UO(X2))'

[l",!(UO(XI)) -l",!(UO(X2»]t = X2 - Xl·

d d
By the mean value theorem, dx[du!(uo(X))](XI - X2)t = X2 - Xl for

some x E (XI, X2), hence we have

d d 1 1
t = -(dx[du!(uo(x»)])- ~ - B"

Note that ~ [~!(uo(x»)] < O. Therefore, u(x, t) is determined uniquely

by its initial data for x E RI and 0 :$ t < -i =T. Hence U E CI(RI X

(0, - ~)) and solves (IVP) by implicit function theorem. Indeed, if

d d d d
dx[du!(uo(x))) < 0, then t dx[du!(uo(x))] ~ Bt > o. Hence

d d 1
1 + -d [-d !(uo(x))]t -=1= 0 for any x E RI,O < t < --.

X u B

Now we shall show that there are two characteristics crossing either
T = - i or just afterward. In other words, for any € > 0 they cross at

t E [- ~, - ~ + €), therefore the solution u can not be continued as a

single valued solution of (IVP) beyond T = -1.
d d

Case 1. Assume that = dx[du!(uo(x))] for all X E (a,b),a < b. Then

for any Xl and X2 in the interval (a,b) so that Xl < X2, let 11 and 12 be
characteristics starting from (XI, 0) and (X2,0), respectively, as in (1.2).
IT It and 12 intersect, then the t-component of intersection point is

-1 1
d d = -- > 0,
dX[d"'!(uO(x))] B

for Xl < X < X2, by the mean value theorem.
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Case 2. Assume that ;xI;uf{uo{x))] has a strict minimum B at xo.
For 1«51 small, let 11 and 12 be characteristics starting from (xo,O) and
(xo + «5,0) then

d d
11 : x = du/{uo(xo))t + Xo and 12 : x = duf{uo(xo+ «5))t + Xo + «5.

Hence at the point of their intersection, we have

where x is a point between Xo and Xo + 6. For 161 small enough, B <
d d

dx[du/(uo{x))] < 0 and so 0 < -1 < t(6). Moreover, as 161 decreases

to 0, x -+ Xo and so t(<<5) -+ -1.

Case 3. Assume that ~[: f{uo{x))] has a strict infimum, Le., B <

:x[:u/{uo{x))] for any x E

U

R. Since :x[:u/(uo(x))] is continuous,
d d

dx'[du/{uo{x))] -+ B as x -+ -00 or x -+ 00. Assume the convergence
occurs as x -+ -00. Let e > 0 and take XI sufficiently large as a negative

number so that ~[d~/{uo{xl))] < B + e < O. Then for sufficiently

small 181, as in case 1, any two characteristics starting from {x}, 0) and
(x I + «5, 0) will meet each other at t(«5), hence we have

where x E (XI,XI +6) for sufficiently small 6 and 7J{e) -+ 0 as e -+ O. We
complete the proof.

Now, suppose that we have the region S in R such that the slopes of
characteristic lines isuing from x E S decreasing monotonically, then we
can formulate an envelope, whose tangent lines are those characteristic
lines, as follows ;
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Consider arbitrary two neighbouring characteristics issuing from (TJ, 0)
and (TJ + 6,0), for 161 small enough, so that

d d
I" = du f( uo(TJ))t + TJ and 16 = du f( uo(TJ +6))t + TJ + 6.

Then they meet at t = tuf(uo("»-iuf(uo(,,H»'

which converges to -kl/u,"tuo(,,»] as 161 ~ o. Hence

(lA)
--!uf(uo(TJ)) -1

E(TJ) = (l,,[dduf(uO(77))] +TJ, l'l[d~f(uO(77))])

is the curve of the envelope inside of which any two characteristic lines
meet.

Note that the envelope has a corner or cusp at time - 1 (see figures
1.1,2.1, and 3.1). For example, consider Ut + UU x = 0 with Uo = sin(s),
then E(s) = (- tan(s) +s, - sec(s)). We can easily show that each E(s)
has two curves meeting at (mr, l)(n = ±1, ±3, ±5, ... ). At these points,
the envelope has a cusp.

The envelope has a corner only if the region d~[~f(uo(x))] < 0 has

an interval in which d~ f( uo(x)) is linear with respect to x because if h
and 12 are tangent lines of the envelope and these lines meet as (TJbO),
(172,0) in the line t = 0, respectively, then any characteristic line issuing
from a point (x,O) where x lies between 171 and 772 must pass the point
at which the two curves which consists of the envelope meet. Hence the

slope of these lines d~ f( uO(TJ)) is a linear function with respect to TJ

between "11 and "12.

2. Computer Simulations

In section 1, we showed that although the initial data is smooth, we
cannot generally obtain global smooth solution for (IVP). H

(2.1) -00 < B = inf dd [dd f(uo(x))] < 0,
x X U
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then there is a smooth solution u(x, t) only for 0 :5 t :5 T =, - 1. For
t ~ T, we must consider the solution for (IVP) in the distribution sense.
Peter D. Lax (see [2]) proved the existence of the generalized solution for
(IVP) with Uo E Loo(R) by formulating a difference scheme as follows:

(2.2) n+I _ uk+I + Uk- I + 6.t (fn fn)
u k - 2 26.x k-I - HI'

Here ui: abbreviates an approximation to u at t = n6.t, x = k6.x, and
fJ: abbreviates f( uk)' As a stability condition, this scheme requires that

(2.3)

where M = lIuollLoo' Note that this scheme is valid for solutions with
shock discontinuity (see [2]). We shall use this scheme to show that for
smooth data satisfying (2.1), how the solution for (IVP) varies before

T = - ~, and how the smoothness of the solution is broken after T.
The surface simulated by the above scheme is shown by the field of
characteristic lines in the figures. First, consider Burger's equation

(2.4)

In this case,

Ut + uU z = o.

~f(uo(x)) = uo(x) or :x [:uf(uo(x))] = u~(x).

IT uo(x) = x2 , then B = infu~(x) = inf2x = -00. Hence we cannot
z z

obtain any strip in which the solution for (2.1) is smooth. Let uo(x) =
sinex) for (2.4). Then discontinuity starts at time T = 1. By the stability
condition, we must have ~~ :5 1. The characteristics and integral surface
are displayed in figures 1.1 and 1.2.
Let uo(x) = 1 + cos(x) with feu) = ~U2. In this case, the initial data
valued on the interval (0, ,V will develope a shock discontinuity since
u~(x) < 0 and f" > O. We can easily show that the shock starts at
et"",~) by the equation (1.4). (see figures 2.1, 2.2).
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Consider feu) = u(l - u) for (IVP) with initial data as follows:

(2.5) uo(x) =

o
3+8

2

1 + cos(s)

o

if s < -3;

if - 3 < s < -1;

if -1 < s < 0;

if 0 < s < 71";

if s > 71".

Note that because f" < 0, any shock forms by the initial data whose

derivatives are positive. Since f"(u) = -2 < 0, d~ {f'(u)} = f"(u)u'(x)

< 0 if{ u~(x) > O. We restrict the domain of uo(x) to [-5,71"]. Then
u~(x) > 0 if{ x E [-3, -1]. By the characteristic method, the character
istic curves are as follows :

(2.6) x(t,s) =

t+s

(-2s - 5)t + s
-3t+s

(-1 - 2 cos(s»t + s

t+s

if s < -3;

if - 3 < s < -1;

if -1 < s < 0;

if 0 < s < 71";

ifs > 71",

. dx (J] 5 1
and the shock forms Wlth speed -d = -[] = -1 at (--, -). In fact, the

t u 2 2
discontinuity line is x = t - 2 for! < t <"1 (see figures 3.1, 3.2). The
subsequent pages are results of simulations for various data. Each pages
contain characteristic field (first figure) and integral surface (second fig
ure) in (x, t )-space.
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1
f(u) = 2"u2 uo(x) = sin(x)

Figure 1.1

(Xl

Figure 1.2
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1
feu) = 2'u2 uo(x) = 1 -+ cos(x)

Figure 2.1

T

Figure 2.2
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l(u) = u(l - u) uo(x) (2.5)

Figure 3.1

T

Figure 3.2
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