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PERIODIC PROPERTIES FOR

MAPPINGS OF CONTINUA *

JONG SOOK BAE, SEONG GIL LEE AND SEUNG KAB YANG

1. Introduction

Let X be a topological space and let CO (X) denote the set of contin
uous maps of X into itself. For any f E CO(X), let fO : X --t X be the
identity, and define, inductively, fn = f 0 f n- 1 for any positive integer
n. A point x E X is a periodic point of f of period n > 0 if fn(x) = X

but f'ex) =I- x for all 0 < i < n. Hence x is a fixed point if n = 1. A
point x E X is called a recurrent point of f if there exists a sequence
nj --t 00 of positive integers such that fni(x) --t x. We denote the sets
of periodic and recurrent points of f by P(f) and R(f), respectively.

Bya continuum we mean a compact connected Hausdorff space and
by a tree we mean a continuum in which every pair of distinct points
is separated by a third point.

In this paper we give several properties of a tree as a partially or
dered topological space and obtain results concerning periodic and re
current points for maps of the tree. Also, we study recursive properties
for maps of the various spaces, that is, linear continua, Yn = {z E C :
o~ zn ~ I} and a Sharkovsky space Z which is not homeomorphic to
any linear continuum.

2. Properties of the tree

A partially ordered topological space (denoted by POTS) X consists
of a set with a partial order ~ and a topology which has a subbasis for
its closed sets consisting of the sets:

{xEX:x~a}, {xEX:x;:::a}

for all a E X (see [15]). If the partial order is linear, then this topology
coincides with the order topology. We say that a tree is a dendrite if
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it is metrizable (see [9] or [17]). The triod is an example of a dendrite,
and a linearly ordered dendrite is an arc, i.e., a homeomorphic image
of the unit interval. A characterization. of a dendrite and a tree as a
POTS was given by L.E.Ward, Jr., [16], that is, a tree admits an order
::; such that it is order dense and has the Iub and gIb property, and
also the induced order topology coincides with the original one.

Hereafter we will assume that a tree is a POTS with an order which
is order dense and has the Iub and gIb property.

Now, we give several properties of a tree, which will be used in the
following sections.

LEMMA 2.1. Let X be a tree and x,y E X with x < y. Then there
exists a linear continuum Mo C X with gIb Mo = x and lubMo = y.

Proof. Let X o = {z EX: x::; z ::; y} and r = {M C X o : x, yE M
and M is linearly ordered}. Then since {x,y} Er, r =I-</>. Let {Ma}
be any chain in r. Then it is easy to show that Ua Ma is linearly
ordered. Therefore by Zom's lemma, r has a maximal element Mo.
Then clearly glbMo = x and lubMo = y.

Now we claim that Mo is connected. Suppose that Mo is not con
nected. Then there is a separation A, B C Mo such that x E A and
yE B. Since A has an upper bound y, Xo = lubA exists and Xo ::; y. It
is easy to see that Mo U {xo} is also linearly ordered, so that x 0 E Mo
by the maximality of Mo. Since A is closed, Xo E A and hence Xo < y.
This means that {z E B: z > xo} =I- </>. Let Yo = glb{z E B: z > xo}.
Then Yo 2 Xo and Yo E Mo by the same reason as above. Therefore
since B is closed Yo E B. Since An B = </>, we know that Xo < Yo.
Since X is order dense, there exists a z E X with .xo < z < y. But
then z E X o and Mo U {z} is linearly ordered, which contradicts to the
maximality of Mo. This completes the proof.

COROLLARY 2.2. Let X be a tree and x, y E X with x < y. Then
the set

Xo = {z EX: x ::; z ::; y}

is connected.

Proof. For any z E X o, by Lemma 2.1. there exists a linear contin
uum M C X such that glbM = x and lubM = z. This means that
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every Z E X o can be lie in the same component of x in X o. Therefore
X o is connected.

LEMMA 2.3. Let X be a tree and x, y, z E X with x < z < y. Then
x and y cannot belong to the same component of X - {z}.

Proof. By Lemma 2.1, we can choose linear continua L1, L 2 C X
such that

glbL l = x, lubLl = Z = glbL2 , lubL2 = y.

Then actually L = L l U L 2 is a linear continuum. Therefore x and y
cannot be separated by a point in X - L. Since X is a tree, x and
y can be separated by a third point in X, which means that x and y
can be separated by only a point in L. Since L is a linear continuum,
actually x and y are separated by z.

THEOREM 2.4. Let X be a tree and x, y E X with x < y. Then the
set

Xo = {z EX: x ::; z ::; y}

is a linear continuum.

Proof. By Lemma 2.1, it suffices to show that X o is linearly ordered.
On the contrary, suppose that there are non-comparable points ZI, Z2

in X o. Then by Lemma 2.1, x and y can not be separated by ZI and
Z2, which contradicts to Lemma 2.3.

Now, in Theorem 2.4, we denote the set X o by [x, yJ. Then Theorem
2.4 says that [x, yJ is a linear continuum.

3. Fixed points for maps of the tree

Let 1 be a closed interval of the real lines and let f E GO(l). If a
closed subinterval K of 1 satisfies f(K) ::::> K, then there is a fixed point
in K ([15], [10], [13] and [14]). But this is not true for a continuous
map of the circle SI. For f E Co (SI), however, if N is a proper closed
interval on SI such that f(K) = N for some closed interval KeN,
then f has a fixed point in N [6J.

Now, for maps of a linear continuum, we have
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LEMMA 3.1. Let L be a linear continuum and 1 be a closed interval
in L. If f : L -+ L is a continuous function such that f (1) c I or
f(1) ::> 1. Then f has a fixed point in [.

Proof. First, suppose that f(1) c 1 and 1 = [a, b]. Assume that f
is fixed point free. And put

A={xE1:'f(x»x},

B={xE1:f(x)<x}.

Then a E A and bE B, so that A i= 4> and BE 4>. Since f is continuous,
it is easy to show that A and B are open sets. This means that A and
B form a separtion of a connected set I, which is a contradiction.
Therefore f has a fixed point in 1.

For the case f(1) ::> 1, see the lemma 2.3 of [13].

THEOREM 3.2. Let f be a continuous selfmap ofa tree X and J be
an open subset of X such that J is a linear continuum. If f( J) :J J,
then there exists a closed subintervaI Q of J such that f(Q) = J.

Proof. Let p = gib J and q = lub J. Then by Theorem 2.4, J = fp, q].
We can choose a, b E J such that f(a) = p, f(b) = q. Now we may
assume that a < b. Define a :S r :S b by

r = lub{x E [a, b] : f(x) = p}.

Then by the continuity of f and since [a, b] is a linear continuum,
f(r) = p. Now we define r < s :S b by

s = glb{x E [r,b]: f(x) = q}.

Then f(s) = q by the same argument. We put Q = [r,s] C J and show
that f(Q) = J.

First, we show that f(Q) :J J. On the contrary, suppose that z E
J - f(Q). Then p and q can be separated by z, which contradicts to
the fact f (Q) is connected. Hence f (Q) ::> J.

Next, if we prove that the set

A = {x E [r,s]: f(x) rf. J}
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is empty, then f(Q) C J. Now assume that A 1= tP. Since f(Q) :J J,
we can choose r < c < s such that f(c) E J. Then since A i= tP, we
know that either

At = {x E [r,c] : f(x) ~ J}

or
A 2 = {x E [c,s] : f(x) ~ J}

is empty. Now assume that At 1= tP and let d = lubAt . Then d :0:; c and
f([d, cD C J and f(d) E X - J by the continuity of f. Since J is an
open subset of X, we know that JnX - J c {p,q}, so that f(d) =p
or q. But since d < s means f(d) = p, by the choice of r, in this case
we can see that d = r. But lubAt = r means At = tP because of r ~ A,
which is a contradiction. Also we can show that A2 = tP by the same
way. Hence A = tP. Thus f(Q) C..4, which completes the proof.

THEOREM 3.3. Let f be a continuous selfmap of a tree X and
x, y E X with x < y.

(1) If f([x, yD c [x, y], then f has a fixed point in [x, y].
(2) If(x, y) = [x, y] - {x, y} is open in X and f([x, yD :J [x, y], then

f has a fixed point in [x, y].

Proof. (1) Since [x,y] is a linear continuum by Theorem 2.4, f has
a fixed point in [x, y] by Lemma 3.1.

(2) By Theorem 3.2, we can have a closed subinterval Q of [x, y]
such that f(Q) = [x, y]. Then we claim that f has a fixed point in Q.
Suppose that f has no fixed point in Q. Now let

A = {z E Q: f(z) < z}

B = {z E Q: f(z) > z}.

Then since f is continuous, A and B are open in Q. Also Q c [x, y]
and f(Q) = [x, y] mean that A 1= tP and B 1= tP. Therefore A and B
form a separation of Q, which gives a contradiction because Q is also
a linear continuum.

REMARK. For the above results on the real line and the linear con
tinuum, see lemmas 0 and 1 of [10] and lemmas 2.2 and 2.3 of [13],
respectively.
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4. Recurrent Properties for Maps of the tree

In this section we describe the recurrent properties for maps of the
tree.

We begin with the lemma of [3].

LEMMA 4.1 ([3], LEMMA 1). Let j be a continuous selfmap of a
compact Hausdorff space. Then R(J) = R(Jn) for each positive integer
n.

PROPOSITION 4.2. Let j be a continuous map of a tree X and let
J be a subset of X with

J = [a, b] = {x EX: a :::; x :::; b}

for some a, b E X witb a < b. H J n P(J) = 4> and j(J) c J, then
J n R(J) = 4>.

Proof. Since j (x) #- x for all x E J, two sets

A={XEJ:j(x»x}, B={XEJ:j(x)<x}

form a separation of J. Since [a, b] is closed, J = [a, b]. And by
Theorem 2.4, J is a linear continuum, so that J is connected. Therefore
A = J or B = J. Now assume that A = J. Then for each fixed x E J,
we have

x<j(x)<P(x)<··· .

Since U = X - {y EX: y ~ j(x)} is an open set containing x and
jn(x) fJ. U for all n ~ 2, x fJ. R(J). This completes the proof.

THEOREM 4.3. Let j : X ---+ X be continuous, wbere X is a tree
and let J be an open subset of X witb J n P(J) = 4>. Suppose that
J = [a, b] for some a, b E X with a < b. H j(J) contains a fixed point
of f, tben J n R(J) = 4>.

Proof. Suppose that fn (J) nJ = 4> for all n ~ 1. Then J nR(J) = 4>
since J is open. Suppose that fn( J)n J #- 4> for some integer n ~ 1. Let
pE J such that j2(p) = rep) = ... , and q E J such that jn(q) E J.
Without loss of generality we may assume that p < q. Since jn(p) fJ. J,

A = {x E (a,q] : jn(x) fJ. J} #- 4>,
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where (a,q] = {x EX: a < x ~ q}. Let lubA = r E (a,b). Then, since
f is continuous, r(r) rf- J. But since r((r, q)) c J, fn(r) E J = [a, b].
This means that fn(r) = a or b. Now we may assume that fn(r) = a.
Then we claim that

(*) for each x E J with fk (x) E J for some integer k 2: 1, then we
have fk(x) < x.

To prove (*), we need the following results:
(1) For each k 2: 1, f k (J) does not contain both a and b. In partic

ular b rf- fn( J).
(2) If fk(J) n J =I- </> for some integer k ~ 1, then a E fk(J).

Proof of (1). Suppose that a, b E fk (J) for some k 2: 1. Then
actually [a, b] c r(J). To see this, suppose that there is a point
c E [a, b] such that fk( J) ::j c. Then since r(J) is connected, by
Lemma 2.3 a and b can not be separated by c. Therefore by Theorem
3.2 and Theorem 3.3, fk has a fixed point in J, which is a contradiction.

Proof of (2). The above argument shows that there is a point s E J
such that fk (s) = a or b. Suppose that fk (s) = b. Then by (1) we know
that f(p) = fn(p) =I- b and also f(p) = fk(p) =I- a. Since f(p) E fk(J),
b and f (p) can not be separated by a and also since fn (r) = a, a and
f(p) can not be separated by b. But since f(p) rf- J, this means that a

and b can not be separated by any element of a < x < b by (1), which
contradicts to Lemma 2.3.

Now we will prove (*). Let x E J with fk(x) E J for some integer
k > 1. Then by (2) we know that tpere is a point c E J such that
fk(c) = a. Now assume that x < fk(x). Then fk(c) < c and x < fk(x)
means that fk(J1 ) :J J1 , where J1 = [c,x] or [x,c]. Therefore by
Theorem 3.2 and Theorem 3.3, J1 n.P(f) =I- </>, a contradiction.

Now suppose that x E J n R(f). Then, by definition, there exists a
subsequence {Ink (x)} of {In( x)} such that r k(x) --+ x and fnk (x) E J
for all k ~ 1. Then by (*)

a < ... < fn k+1 (x) < fnk(x) < ... < fn 1 (x) < x.

But then
fnk(x) rf- X - {y EX: fn 1 (x) ~ y}

for all k 2: 1. Since {y EX: fn 1 (x) ~ y} is closed, it leads to a
contradiction. Therefore J n R( 1) = </>.
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5. Applications to various spaces

In 1980, E.M. Coven and G.A. Hedlund showed the following result:

THEOREM 5.1 ([8], THEOREM 1). For any lE GO(I), where I is a
closed interal of the real line,

P(f) = R(f).

Special cases of this theorem have been proved in [4] and [7].
For homeomorphisms of the circle SI, it is easily shown that the

above result is not true since there are no periodic points for any irra
tional rotations on the circle, but every point is recurrent. By adding
the necessary condition that the set of periodic points is nonempty, in
1982, I. Mulvey [12] proved in his doctoral dissertation that for any
I E GO(SI) with P(f) =I- 4>, P(f) = R(f). Also, in 1986, G.F. Liao
and J.C. Xiong [l1J proved the same result for any I E GO(Sl) with
P(f) =I- 4> in a different method. Recently, J.S. Bae and S.K. Yang
[3] found a very simple and refined independent proof of the above
theorem of Mulvey.

In this section, we will show that Theorem 5.1 still holds for maps
of various spaces.

THEOREM 5.2. Let I : L ---+ L be continuous where L is a linear
continuum. Then P(f) = R(f).

Proof. By Theorem 3.3, P(f) =I- <p. Now let J be a component of
L - P(f). We show that J nR(f) = <p. IT In( J) nJ = 4> for all integer
n ~ 1, J n R(f) = 4>, because J is open. IT fn( J) c J for some integer
n ~ 1, then by Proposition 4.2, R(fn)nJ = 4>, and hence R(J) nJ = <p
since R(f) = R(fn) by Lemma 4.1. Suppose that In(J) n J =I- <p and
fn( J) n (L - J) =I- <p for some integer n ~ 1. Since In( J) is an interval,
it contains an end point a of J, a ft J. IT a E P(f), then we can choose
a point x E J and an integer m ~ n such that

Therefore by Theorem 4.3, J n R(f) = <p. Suppose that a ft P(j), and
let x E J such that In(x) = a. Now, we may assume that a < x. Then
since [a, x] n P(J) = <p, In(a) < a. Therefore (fn(a), a] C fn(J) since



Periodic properties for mappings of continua 191

fn(J) is connected. Since a E P(J) and [a,x) n P(f) = t/J, (fn(a),a]
contains a periodic point. Hence fn( J) contains a periodic point, say
q. Then also we can find a point x E J and an integer m 2: n such that
fm( x) = pm(x) = .... Therefore by Theorem 4.3, R(fn) n J = t/J and
hence R(f) n J = t/J by Lemma 4.1.

On the other hand, in 1989, L. Alseda, J. Llibre and M. Misiurewicz
[1] have characterized the set of periods of periodic orbits for continuous
maps of Y = {z E C : z3 E [0, I]} into itself having zero as a fixed
point.

Now we will prove that Theorem 5.1 holds for maps of Yn = {z E
C : 0 ~ zn ~ I} with f(O) = O.

THEOREM 5.3. Let f : Yn --+ Yn be continuous with f(O) = 0 and
n 2: 1. Then P(f) = R(f).

Then Yn is a partially ordered topological space and this order topology
is just the one inherited from C. Since Yn is compact connected and
order dense, Yn is in fact a tree.

Let J be a component of Yn - P(f). Then it is easy to show that J is
open and J is a linear continuum. Actually without loss of generality,
we may assume that

J C [0,1] = {x ER: 0 ~ x ~ I}

and the order is the usual one. As in the proof of Theorem 5.2, we may
assume that fn( J) n J i= t/J and fn( J) n (Yn - J) i= t/J for some integer
n 2: 1. Let x E J with fn (x) E J. Since J is linearly ordered, x and
fn(x) is comparable. First suppose that x < r(x). Then we know
that jn(y) > y for all y E J. In fact if there is a point y E J such that
fn(y) < y, then fn must have a fixed point between x and y. Now let
j = [a, b] for some 0 ~ a < b ~ 1. If b E J, then we must have b = 1,
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so that fn(b) > b leads to a contradiction. Therefore b fI. J. But then
fn( J) n (Yn - J) =f:. 4J means that fn( J) c [0, 1] and hence there is a
point z E J such that fn(z) = b. But if fn(y) :::; b for all y E J, then
fn(b) = b by the continuity of fn. On the other hand if there is a point
yE J such that fn(y) > b, then fn(J) ::> [fn(x),fn(y)] and bE P(f)
mean that fn( J) n P(f) =f:. 4J.

Next suppose that fn( x) < x. Then also we know that fn(y) < y for
all y E J. Since J is open, a ft J and we know that fn(a) :::; a. Hence,
by the same way as above, we can easily see that fn( J)np(f) =f:. 4J since
oE P(f). Therefore by Theorem 4.3, J n R(f) = 4J, which completes
the proof.

COROLLARY 5.4. Let f : Yn -j. Yn be continuous such that °E

P(f). Then P(f) = R(f).

Proof. Since°E P(f), °is a fixed point offn for some integer n 2:: 1.
Then by Theorem 5.3, p(fn) = R(fn). But since p(fn) = P(f) and
R(fn) = R(f) by Lemma 4.1, we conclude that P(f) = R(f).

A topological space X is called a Sharkovsky space provided that if a
continuous map f : X -j. X has a periodic point of period k, then f has
periodic points of all periods which follow k in Sharkovsky's sequence:

3 5 7 ... 2· 3 2· 5 2· 7 '" 22 • 3 22 • 5 22 • 7 '" ... 23 22 2 1, " , , , , , , , , , , , " ..

In 1989,Bae and Sung [2] found a counterexample for Question 3.8
of [13} as follows.

EXAMPLE 5.5. Let n be the first uncountable ordinal and let X be
a linearly ordered set from [0, Q] by implementing a copy of the unit
interval (0,1) between each ordinal a and et + 1. Let Y be a dosed
interval [-1, 1] of the real line and let Z be a union of X and Y attached
Q to 0, that is,

Z=XUy/o",n.

Since X and Y are themselves linear continua, Z with the quotient
topology can be a tree by giving a. suitable partial order. Then Bae
and Sung [2] proved that Z is a Sharkovsky space, which is not home
omorphic to any linear continuum.

Although it seems that Z is similar to Y3, without the condition
oE P(f), it can be shown that a continuous map f : Z -j. Z has the
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property that P(f) = R(f). Note that actually Z is not a dendrite
because Z is not path connected, but Yn is a typical example of the
dendrite.

THEOREM 5.6. Let Z be defined as above. If f : Z --+ Z is contin
uous, then P(f) = R(f).

Proof. Since 0 rv Q in Z, we denote the class {O} = {Q} by Q simply.
If f(Q) = Q, then the same argument as in the proof of Theorem 5.3
well behave. Let f(n) E X - in}. Then Bae and Sung [2] showed that
f(Z) C X. In fact, since X is not path connected but X - in} and
Y are path connected, f(Z) n Y must be empty. In this case clearly
(Y - in}) n R(f) = 4>, so that R(f) C X. But since X is a linear
continuum and f(X) C X, by Theorem 5.2 P(f) = R(f). Finally if
f(n) E Y - in}, then also we have f(Z) C Y. Therefore by the same
argument as above P(f) = R(f), which completes the proof.
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