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SPACE OF GEOMETRIC STRUCTURES

WHOSE DEVELOPMENTS ARE COVERINGS

HYUK KIM

o. Introduction

Let X be a smooth manifold and A be a Lie group of diffeomor­
phisms of X with "analytic nature". A smooth manifold M has a
(X,A)-structure (or an A-structure, in short) if it admits an atlas
whose coordinate transitions belong to A, and in this case, M is said
to be locally modelled on (X, A). The examples of A-structures in our
mind are the classical space forms and various flat structures such as
affinely, projectively and conformally flat structures. We can associate
the well known model space X and Lie group A appropreately for each
of these examples. Yet the notion of A-structure is much broader as
we can choose, for instance, any Riemanman manifold X and a group
of isometries of X as A.

For a given (X, A), the fundamental questions are to determine
the manifolds admitting A-structures and to describe the space of A­
structures on a given manifold M. The deformation space or the mod­
uli space are sometimes studied in conjunction with the representation
variety Hom(7r, A), 7r = 7rl(M), via the holonomy representation. This
approach is especially useful when the developing map defined on a
universal covering M of M is a diffeomorphism onto X so that A­
structure is complete. In this case, a subset of A\Hom(7r,A)fAut(7r)
(resp. A\Hom(7r, A)) faithfully parametrize the A-structure on M up
to A-equivalence (resp. A-equivalence homotopic to identity). How­
ever if A-structure is not complete, in a lot of important cases, the
developing map becomes a covering map, and we intend to study the
deformation sapce of A-structures in this case.

When the developing map D is a covering, A can be lifted to AD,
the group of A-automorphisms on M. Then the canonical projection
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of AD onto A is a covering homomorphism with the kernel ~ which
is the desk transformation group for D. We show in this paper that
a subset of AD\Hom(7I",AD)jAut(7l'') (resp. A\Hom(7I",A)) is in 1-1
correspondence with the moduli space (resp. the deformation space)
of A-structures whose developing map is a covering, and then show
that the canonical projection of AD onto A induces a covering map
from the representation space Hom( 71", AD) into Hom( 71", A) with fiber
Hom(71", ~) under some conditions.

1. Basic concepts

In this section, we will set up some basic facts and rudiments for
geometric structures for later use. (See also [Go], [Ku], [NY] and [Th]
for more about A-structures.)

Let X be a model smooth manifold and A be a Lie group consisting
of diffeomorphisms of X which are uniquely determined by local data,
i.e., for any a, bE A, alu = blu for a non-empty open set U C X implies
a = b. An A-structure on a smooth manifold M is a maximal atlas
HUa, 'Pan, where 'Po' : Ua -+ X is a smooth coordinate chart, called an
A-chart, such that 'Pa''PpI : 'PI! (UanufJ) -+ 'Pa( U0' nUfJ) is a restriction
of an element gafJ of A. A manifold with an A-structure is called an
A-manifold. Let M and N be A-manifolds. A map f : M -+ N is
called an A-map if it is represented locally by an element of A, i.e.,
for any x E M, there are A-charts (UOt , 'Po') on M and (Vp,tPp) on N
containing x and f(x) respectively such that 'PfJo f 0'P;;I is a restriction
of an element of A. Note that an A-map is a local diffeomorphism.

PROPOSITION 1.1. A-map of a connected A-manifold M into an
A-manifold N is uniquely determined by local data, i.e., if f, 9 are
A-maps: M -+ N with flu = glu for some non-empty open U C M,
then f = g.

Proof. Let W be a maximal open set contained in M on which f
and 9 agree. For any x E W, choose an A-chart (Ua,'Pa) at x such
that f and 9 are represented locally as a, bE A respectively on <.pOt(Ua ).

Since f and 9 agree on a non-empty open set wn Ua , a = b and hence
f = 9 on W U Ua . By maximality of W, Ua C W. This shows that
W = W and hence W = M by connectedness of M.

The above proposition says that an A-map of a connected manifold
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M into X is completely determined by local data if it exists. An A­
map D : M - X, if exists, is called a developing map. In general, a
developing map exists on an A-manifold M, if M is simply connected,
by the usual analytic continuation argument. Therefore to develop a
given A-manifold M, we will use the universal covering M of M with
the pull-back A-structure.

PROPOSITION 1.2. Let M and M' be connected A-manifolds which
have developing map D and D' respectively. For any A-map f: M ­
M', there exists a unique a E A such that a 0 D = D' 0 f.

Proof. There certainly exists such a E A that a 0 D = D' 0 f holds
on a small open set U of M. Now aoD and D' of are both A-maps of
M into X which agree on an open set U, and hence are identical maps
by proposi tion 1.1.

In particular, if f = id on M, Proposition 1.2 says that developing
maps defined on M are essentially unique up to A.

Hence A-structures on a simply connected manifold M can be para
metrized by the equivalence classes of developing maps {D}, i.e., D' E

{D} if{ D' = a 0 D for some a E A. Note also that an A-structure on
simply connected M defines an immersion D : M _ X, a developing
map, and conversely any immersion D : M _ X defines an A-structure
on M by the pull-back structure.

Let M be a connected A-manifold. We will fix a universal covering
space 111 of M and the deck transformation group IT. The pull-back A­
structure gives rise to a developing map D : M - X, and any A-map
f of M into itself will assign a unique a E A such that a 0 D = D 0 f
by Proposition 1.2. We will denote this unique a by PD(f) so that
PD(f) 0 D = Do f. Let AD(M) be the group of A-diffeomorphisms
of M. Then PD : AD(M) - A is clearly a homomorphism since
PD(f 0 g) 0 D = Do Jog = PD(f) 0 Dog = PD(f) 0 PD(g) 0 D and an
element of A is uniquely determined by local data. The pull-back A­
structure on M is IT-periodic and hence IT c AD(M). The restriction
of PD on IT is called the holonomy representation of an A-structure of
M.

Note that if we use another developing map D' = a 0 D, a E A, the
holonomy representation with respect to D' will be PD(r) = PaoD(r) =
a 0 PD(r) 0 a-I = Ca 0 PD(T), T E IT, where Ca is the conjugation by a.
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Indeed, aOPD(r)oD = aoDor = D' or = PD,(r)oD' = PD,(r)oaoD
implies that a 0 PD(r) = PD' (r ) °a since they agree locally.

Let M' be another A-manifold with a universal covering M' and the
deck transformation group II'. Suppose we have a A-diffeomorphism
f : M -j. M'. Choose a lifting of f, j : M -j. M', then j will induce
a unique a E A such that D' 0 1= a 0 D by Proposition 1.2. Now if
we let D" = a 0 D = D' ° j, then PD" = Ca 0 PD by the above note.
Furthermore,

PD'(j 0 r) ° D' = D' o. j 0 r = D" ° r = PD" ( r) ° D"

::= PD,,(r) 0 D' 0 j = PD,,(r) °PD,(i) 0 D'

implies PD,,(r) = PD,(j 0 r 0 1-1) ::= PD' 0 cAr), where Cj is the

conjugation by 1. Hence we have

Ca 0 PD = PD" = PD' 0 C j.

Note that Cj : II -4 II' is an isomorphism. Since M and M' are
diffeomorphic, identifying II and II', this argument shows that if two
A-structures on M represented by developing maps D and D' are equiv­
alent (by an A-diffeomorphism), then the associated holonomy repre­
sentations PD and PD' define a same equivalent class [PD] = [PD/] E
A\Hom(II, A)jAut(II), where A acts on Hom(II, A) on the left through
conjugation and Aut(II) acts on Hom(II, A) as composition on the
right. Note that these two actions commute trivially. Therefore we
have a well-defined map W from the moduli space of A-structures on
M into the representation space A\Hom(II, A)jAut(II) via holonomy
representation. Of course, then the basic problems will be to deter­
mine the image and the fiber of W. In general, these are quite difficult
problems and we will discuss the fiber of '11 in the subsequent sections
especially for A-structures whose developments are covering maps.

2. A parametrization of A-structures at D

From now on, we will consider only A-structure on M whose de­
velopment D : M -4 X is a covering map. Call such structure a
covering A-structure in short. Since M has pull-back A-structure, D
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is "IT-periodic", i.e., IT C AD(M) = the group of A-diffeomorphisms
of M. Let ~ be the deck transformation group of the covering map
D : M ---t X. Then clearly we have the following short exact sequence
of Lie groups :

(2.1)
i _ PD

1 ---t ~ ----t AD(M) -----t A ---t 1,

where i is the inclusion map and PD is as defined in the previous section.
In fact, (2.1) defines a unique Lie group structure on AD(AI) so that
PD becomes a covering homomorphism with ker PD = ~.

We will fix a development D and then will parametrize A-structures
on M by diffeomorphisms of M as follows. Suppose we have a covering
A-structure whose development is D' : M ---t X. Then there exists
a lifting I : M ---t M of identity Ix : X ---t X so that the following
diagram commutes.

M
f

IM

D'i iD
Ix

IXX

Clearly I is an A-map and D' = Do I (= 1*D). Since D' is IT-periodic,
for each r E IT, 10 r 0 1-1 = cf(r) is an A-diffeomorphism, and hence
cf(IT) C AD(M). Note that if wc use another lifting l' = 80 1,8 E ~,

then Cl' = Co 0 Cl : IT ---t AD(M). Conversely, given any I E Diffeo(M)
with cf(IT) C AD(M), D' = Do I will define an A-structure on M
which is IT-periodic, i.e., each r E IT is an A-map, and hence defines
an A-structure on M. Let's denote M with A-structure D' = Do I by
(M, J). Thus we can parametrize covering A-structures on M by

FD = {J E Diffeo(M) Icf(IT) C AD(M)}.

Let N(IT) = NDiffeo(l\l)(IT) denote the normalizer of IT in the diffeo­

morphism group Diffeo(M) of M.

PROPOSITION 2.1. (a) (M,f) = (M,g), i.e., id: (M,f) ---t (M,g) is
an A-ditfeomorphism if and only if there is Cl' E AD such that 9 = Cl' 0 I.
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(b) (M, f) and (M,g) are A-diffeomorpbic if and only if there exist
0: E AD(M) and h E N(II) such that go h = 0: 0 I.

Proof. Let Tt : (M, f) -+ (M, g) be an A -diffeomorphism. Then a
lifting of h, h : M -+ M is an A-diffeomorphism and normalizes n: By
proposition 1.2, there exists a E A such that a 0 (D 0 J) = (D 0 g) 0 h.
Hence Do (g 0 h 0 1-1) = a 0 D and this shows that 0: = 9 0 h 0 1-1 E
AD(M). The converse is obvious by reversing the argument. this
proves (b), and (a) follows by letting h = identity.

The above proposition suggests us to define an action of AD =
AD(M-) on :FD as left multiplication and an action of N(II) on :FD
as right multiplication. Note that for 0: E AD and I E :FD, we have
0: 0 I E :FD since CO/of = CO/ 0 Cf : II -+ AD, and that for I E :FD and
hE N(II), 1 0 h E :FD since Cfoh = cf 0 Ch : II -+ AD. Note also that
N(II) c :FD and AD C :FD since II C AD. Therefore AD\:FD can be
viewed as the space of covering A-structures on M and AD\:FDjN(II)
be the moduli space of covering A-structures on M parametrized at D,
which will be denoted as MD.

Now let's see how holonomy representation looks like in this set­
ting. Define t/J : :FD -+ Hom( IT, A) by t/J(J) = PD 0 Cf : IT -+ AD -+

A. Then (PD,t/J) : (AD,:FD) -+ (A, Hom(II, A» is equivariant since
t/J(af) = PD 0 Caf = PD 0 Ca 0 Cf = CPD(a) 0 PD 0 Cf = CPD(a) 0 t/J(J),
and hence t/J induces a quotient map: AD\:FD -+ A\Hom(II, A). Let
C : N(II) -+ Aut(IT) be the conjugation defined by c(J) = Cf. Then
(t/J,c) : (:FD,N(IT» -+ (Hom(II,A),Aut(II» is also equivariant. In­
deed, t/JU 0 h) = PD 0 Cfk = PD 0 cf 0 Ch = t/J(J) 0 Ch. This shows
that t/J induces a map i/J : :FDjN(IT) -+ Hom(II,A)jAut(II) and hence
induces'1J : AD\:FDjN(IT) -+ A\Hom(II,A)/Aut(II). Again the fore
mentioned basic questions are to study the image and fiber of W.

Let's pause at this point for a while to see what happens for "com­
plete" case, Le., when the developing map D is a diffeomorphism. In
this case, we may identify M with X via D and all other covering devel­
opments become diffeomorphisms since X must be simply connected.
Hence MD is the moduli space of complete A-structures on M. With
this identification of M with X, AD = A and PD becomes identity map.
Then:FD = {f E Diffeo(X) Icf : II -+ A} and t/J::FD -+ Hom(II, A) is
defined simply by t/JU) =Cf.
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PROPOSITION 2.2( "COMPLETE CASE"). If C : N(ll) ---+ Aut(ll) is
onto, then if;: FD/N(ll) -4 Hom(IT,A)/Aut(ll) is 1-1.

Proof. Suppose i/;{f} = i/;{g}. That is Cf = t/J(f) = t/J(g)o</> = cgo</>
for some </> E Aut(ll). By the hypothesis, there is h E N(ll) such that
Ch = </>. Then Cf = c g 0 Ch implies Ch = C;1 0 Cf = cg-lof, and hence
g-1 0 f E N(ll).

COROLLARY 2.3( "COMPLETE CASE"). If C ; N(II) ---+ Aut(II) is
onto, then '1t : MD = A\FD/N(I1) -. A\Hom(I1,A)/Aut(TI) is 1-1.

Proof. This follows from the above proposition and a simple obser­
vation about the group action, which .we will record as a Lemma below
for later use also.

LEMMA 2.4. Let X be a G-space and Y be an H-space. If </> ;

G -4 H is a surjective llOffioffiorphism and f : X -4 Y is an injective
equivariant map (via </», then the canonical induced map f: G\X -.
H\Y is injective.

Proof. Let's denote the G-orbit of x E X by x and similarly for
H-orbit of y E Y by y. f(x) = f(i) = f(y) = f(y) implies that
f(x) = h . f(y), h E H. Since 4> is surjective, h = 4>(g), 9 E G, and
f(x) = h . f(y) = 4>(g). f(y) = f(g· y) implies x = g. y by injectivity
of f, whence i = y.

Let's go back to the more general case when D is a covering map.
In this case, we obtain corresponding faithful maps using Hom(ll, AD)
instead of Hom(ll, A). Let C : F D -. Hom(ll, AD) be the conjugation
map c(f) = Cf and Z(ll) be the centralizer of IT in Diffeo(M).

PROPOSITION 2.5. c: FD/Z(I1) -. Hom(Il,AD) is injective.

Proof. For z E Z(ll), Cz = id and cfz = Cf 0 Cz = Cf. This shows
that the conjugation map C induces a well-defined map on FD/Z(ll).
If cf = c g , Cf-lg = c-;t 0 c g = id and so f- 1

0 9 E Z(ll).

Furthermore, C : (AD, F D/Z(I1)) -4 (AD, Hom(II, AD)) is equivari­
ant and hence induces a 1-1 map (by Lemma 2.4),
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The space TD will be called the deformation space (of covering A­
structures) parametrized at D. Note that if we let Q = N(II)jZ(II),
then TD/Q = MD = AD\:FDjN(IT). Also notice that we have an
exact sequence,

c
1 -+ Z(II) -+ N(IT) -+ Aut(IT).

Again by Lemma 2.4, we have

PROPOSITION 2.6. If c : N(II) -+ Aut(IT) is onto, then (c,c) :
(TD, Q) -+ (AD\Hom(IT, AD), Aut(IT» is equivariant and induces an
1-1 map: Mc -+ AD \ Hom(IT, AD)jAut(IT).

This proposition shows that in order to determine the fiber of '11 :
MD -+ A\Hom(II,A)/Aut(II), we want to know the relation between
Hom(IT, A) and Hom(IT, AD).

3. Hom(IT,AD) and Hom(IT, A)

Recall (2.1) that we have a short exact sequence of Lie groups,

(3.1)
i p

1 -+ ~ -+ AD -+ A -+ 1

where p = PD and ~ = ker p is also the deck transfonnation group
of a covering development D : At -+ X. From this, it is not hard to
imagine "exactness" of associated Horn-sequence of sets,

(3.2)
i. P.

1 -+ Hom(II, ~) ~ ,Hom(IT, AD) ---t Hom(IT, A).

Indeed, i* is clearly 1-1 and P* 0 i* maps to a trivial representation.
For any <P E Hom(IT, AD) with p*(<p) = po <p being trivial, certainly
<p E Hom(IT, ~). We want to be more precise about the fibration nature
of (3.2) to show that P* is a covering map with fiber Hom(IT,~) under
some conditions. For a Lie group G, we will always give compact-open
topology for Hom(IT, G) and discrete topology for IT and~. First of all,
it is easy to see that the continuity of P* from the following well-known
observation.
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LEMMA 3.1. Let f : Y -+ Z be a continuous map of topological
spaces and X be a locally compact, Hausdorff space. Then f. : Y X -+

ZX given by f*( </J) = f 0 </J, </J E yX is continuous with respect to
compact-open topology on Y X and Z X .

Proof. Since X is locally compact, Hausdorff, f* is continuous if
the associated map J* : X x yX ---+ Z given by J.(x,</J) := f*(4))(x)
is continuous. Note that J* = f 0 ev : X x y X -+ Y -+ Z, where
ev(x,</J) = </J(x). As is well-known, ev is continuous and follows the
continuity of f*.

Let's assume for simplicity that AD is connected deferring the gen­
eral case to a subsequent paper. Since b. is a discrete normal subgroup
of a connected Lie group AD, b. is central and (3.1) is a central ex­
tension. Now Hom(II,~) becomes an abelian group and define an
action of Hom(II, b.) on Hom(II,AD) by (d· <p)(r) = d(r)· </J(r) for
d E Hom(Il, b.) and IjJ E Hom(Il, AD). Note that d· </J is a homomor­
phism : II -+ AD since 6. is central and II C AD. Furthermore, this
action is clearly free. The fibcr of p* is exactly Hom(II, 6.)-orbit and
the quotient map to the orbit space can be identified with P*. Indeed,
if poljJ = poljJ' for </J, 1jJ' E Hom(II,AD), then d(r) = 1jJ'(r) .1jJ(r)-t E b.
is a homomorphism : II -+ AD since ~ is central. Now the following
theorem looks obvious.

THEOREM 3.2. Suppose AD is connected and II is finitely gener­
ated. Then the action : Hom(Il,~) x Hom(Il, AD) -+ Hom(Il,AD)
given by p( d, cjJ) = d·1jJ is a covering action, and the covering projection
can be identified with the map P*: Hom(II, AD) -+ p*(Hom(Il, A)) C
Hom(Il, A) as a set function.

Proof. From the above discussion, it suffices to show that for each
IjJ E Hom(Il, AD), we can choose an open neighborhood W of 4> such
that d . W n W is empty for all non-trivial d E Hom(Il, 6.). Since
~ is a discrete subgroup of AD, there exists an open neighborhood
Vi of e in AD disjoint from the non-trivial element of ~ and plv1 is
a diffeomorphism onto an open set p(Vt ) C A. Let V C Vt be a
neighborhood of e with the property V· v-t C Vt. Let U(r) = V· cjJ( r)
and W = ni::::tS(rl,U(Ti)), where {rt,'" ,rn } is a set of generators
of Il, and S(/{, U) stands for subbasic open set in the compact-open
topology for Alf> whose element sends a compact K C II into an open
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U C AD. IT t/J E d· Wnw, t/J = d·t/J' for some t/J' E W, and this implies
that d(ri)t/J'(ri) = t/J(rd E U(ri) = V· 4>(ri) and t/J'(ri) E V· 4>(Ti) for
i = 1,2"" ,no Now d(ri) = t/J(ri)t/J'(ri)-I = v· 4>(ri)· (v'· 4>(ri»-I =
v . V I -1 for some v, v' E V. Hence d(Ti) E VI n ~ = {e} and d(Ti) = e
for i = 1" .. ,n, i.e., d is trivial.

REMARK 3.3. In general, it is not clear whether the quotient map
q of Hom(II, AD) onto its orbit space Hom(II, AD)fHom(II,~) can be
topologically identified with p*. In the following commutative diagram,
theorem 3.2 says q is a covering map and the induced map p. is a
continuous injection.

P.
Hom(II,AD) , Hom(II,A)

ql ~
Hom(II, AD)fHom(II, ~)

p* becomes an embedding for instance if AD is compact, since the
variety of representation Hom(II, AD) is compact. IT AD is abelian, or
II is a free or free abelian, it can be modified in the proof of Theorem 3.2
to show that p*(W) is open in p*(Hom(II, AD» and hence p. becomes
an embedding and we can identify q with P* topologically.

References

[Go] W. M. Goldman, Geometric structures on manifolds and varieties of repre­
sentations, Geometry of group representations, Contemporary Math. 74(1988).

[Ku] R. Kulkarni, The principle of uniformizations, J. Dift'. Geom. 13(1978),
109-138.

[NY] T. Nagano and I<. Yagi, The affine structures on the real two-torus, Osaka J.
Math. 11(1974), 181-210.

[Th] W. Thurston, The geometry and topology of 3-manifolds, Princeton University
mimeographed notes, 1977.

Department of Mathematics
Seoul National University
Seoul 151-742, Korea




