SPACE OF GEOMETRIC STRUCTURES WHOSE DEVELOPMENTS ARE COVERINGS

HYUK KIM

0. Introduction

Let X be a smooth manifold and A be a Lie group of diffeomorphisms of X with "analytic nature". A smooth manifold M has a (X,A)-structure (or an A-structure, in short) if it admits an atlas whose coordinate transitions belong to A, and in this case, M is said to be locally modelled on (X,A). The examples of A-structures in our mind are the classical space forms and various flat structures such as affinely, projectively and conformally flat structures. We can associate the well known model space X and Lie group A appropriately for each of these examples. Yet the notion of A-structure is much broader as we can choose, for instance, any Riemannian manifold X and a group of isometries of X as A.

For a given (X, A), the fundamental questions are to determine the manifolds admitting A-structures and to describe the space of A-structures on a given manifold M. The deformation space or the moduli space are sometimes studied in conjunction with the representation variety $\operatorname{Hom}(\pi, A)$, $\pi = \pi_1(M)$, via the holonomy representation. This approach is especially useful when the developing map defined on a universal covering \tilde{M} of M is a diffeomorphism onto X so that A-structure is complete. In this case, a subset of $A \setminus \operatorname{Hom}(\pi, A) / \operatorname{Aut}(\pi)$ (resp. $A \setminus \operatorname{Hom}(\pi, A)$) faithfully parametrize the A-structure on M up to A-equivalence (resp. A-equivalence homotopic to identity). However if A-structure is not complete, in a lot of important cases, the developing map becomes a covering map, and we intend to study the deformation sapce of A-structures in this case.

When the developing map D is a covering, A can be lifted to A_D , the group of A-automorphisms on \tilde{M} . Then the canonical projection

Received June 15, 1990.

Research partially supported by KOSEF Grant.

of A_D onto A is a covering homomorphism with the kernel Δ which is the desk transformation group for D. We show in this paper that a subset of $A_D\backslash \mathrm{Hom}(\pi,A_D)/\mathrm{Aut}(\pi)$ (resp. $A\backslash \mathrm{Hom}(\pi,A)$) is in 1-1 correspondence with the moduli space (resp. the deformation space) of A-structures whose developing map is a covering, and then show that the canonical projection of A_D onto A induces a covering map from the representation space $\mathrm{Hom}(\pi,A_D)$ into $\mathrm{Hom}(\pi,A)$ with fiber $\mathrm{Hom}(\pi,\Delta)$ under some conditions.

1. Basic concepts

In this section, we will set up some basic facts and rudiments for geometric structures for later use. (See also [Go], [Ku], [NY] and [Th] for more about A-structures.)

Let X be a model smooth manifold and A be a Lie group consisting of diffeomorphisms of X which are uniquely determined by local data, i.e., for any $a, b \in A$, $a|_U = b|_U$ for a non-empty open set $U \subset X$ implies a = b. An A-structure on a smooth manifold M is a maximal atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$, where $\varphi_{\alpha}: U_{\alpha} \to X$ is a smooth coordinate chart, called an A-chart, such that $\varphi_{\alpha} \cdot \varphi_{\beta}^{-1}: \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ is a restriction of an element $g_{\alpha\beta}$ of A. A manifold with an A-structure is called an A-manifold. Let M and N be A-manifolds. A map $f: M \to N$ is called an A-map if it is represented locally by an element of A, i.e., for any $x \in M$, there are A-charts $(U_{\alpha}, \varphi_{\alpha})$ on M and $(V_{\beta}, \psi_{\beta})$ on N containing x and f(x) respectively such that $\varphi_{\beta} \circ f \circ \varphi_{\alpha}^{-1}$ is a restriction of an element of A. Note that an A-map is a local diffeomorphism.

PROPOSITION 1.1. A-map of a connected A-manifold M into an A-manifold N is uniquely determined by local data, i.e., if f, g are A-maps: $M \to N$ with $f|_U = g|_U$ for some non-empty open $U \subset M$, then f = g.

Proof. Let W be a maximal open set contained in M on which f and g agree. For any $x \in \overline{W}$, choose an A-chart $(U_{\alpha}, \varphi_{\alpha})$ at x such that f and g are represented locally as $a, b \in A$ respectively on $\varphi_{\alpha}(U_{\alpha})$. Since f and g agree on a non-empty open set $W \cap U_{\alpha}$, a = b and hence f = g on $W \cup U_{\alpha}$. By maximality of W, $U_{\alpha} \subset W$. This shows that $\overline{W} = W$ and hence W = M by connectedness of M.

The above proposition says that an A-map of a connected manifold

M into X is completely determined by local data if it exists. An A-map $D: M \to X$, if exists, is called a *developing* map. In general, a developing map exists on an A-manifold M, if M is simply connected, by the usual analytic continuation argument. Therefore to develop a given A-manifold M, we will use the universal covering \tilde{M} of M with the pull-back A-structure.

PROPOSITION 1.2. Let M and M' be connected A-manifolds which have developing map D and D' respectively. For any A-map $f: M \to M'$, there exists a unique $a \in A$ such that $a \circ D = D' \circ f$.

Proof. There certainly exists such $a \in A$ that $a \circ D = D' \circ f$ holds on a small open set U of M. Now $a \circ D$ and $D' \circ f$ are both A-maps of M into X which agree on an open set U, and hence are identical maps by proposition 1.1.

In particular, if f = id on M, Proposition 1.2 says that developing maps defined on M are essentially unique up to A.

Hence A-structures on a simply connected manifold M can be para metrized by the equivalence classes of developing maps $\{D\}$, i.e., $D' \in \{D\}$ iff $D' = a \circ D$ for some $a \in A$. Note also that an A-structure on simply connected M defines an immersion $D: M \to X$, a developing map, and conversely any immersion $D: M \to X$ defines an A-structure on M by the pull-back structure.

Let M be a connected A-manifold. We will fix a universal covering space \tilde{M} of M and the deck transformation group Π . The pull-back A-structure gives rise to a developing map $D: \tilde{M} \to X$, and any A-map f of \tilde{M} into itself will assign a unique $a \in A$ such that $a \circ D = D \circ f$ by Proposition 1.2. We will denote this unique a by $\rho_D(f)$ so that $\rho_D(f) \circ D = D \circ f$. Let $A_D(\tilde{M})$ be the group of A-diffeomorphisms of \tilde{M} . Then $\rho_D: A_D(\tilde{M}) \to A$ is clearly a homomorphism since $\rho_D(f \circ g) \circ D = D \circ f \circ g = \rho_D(f) \circ D \circ g = \rho_D(f) \circ \rho_D(g) \circ D$ and an element of A is uniquely determined by local data. The pull-back A-structure on \tilde{M} is Π -periodic and hence $\Pi \subset A_D(\tilde{M})$. The restriction of ρ_D on Π is called the holonomy representation of an A-structure of M.

Note that if we use another developing map $D' = a \circ D$, $a \in A$, the holonomy representation with respect to D' will be $\rho_D(\tau) = \rho_{a \circ D}(\tau) = a \circ \rho_D(\tau) \circ a^{-1} = c_a \circ \rho_D(\tau)$, $\tau \in \Pi$, where c_a is the conjugation by a.

Indeed, $a \circ \rho_D(\tau) \circ D = a \circ D \circ \tau = D' \circ \tau = \rho_{D'}(\tau) \circ D' = \rho_{D'}(\tau) \circ a \circ D$ implies that $a \circ \rho_D(\tau) = \rho_{D'}(\tau) \circ a$ since they agree locally.

Let M' be another A-manifold with a universal covering \tilde{M}' and the deck transformation group Π' . Suppose we have a A-diffeomorphism $f: M \to M'$. Choose a lifting of $f, \tilde{f}: \tilde{M} \to \tilde{M}'$, then \tilde{f} will induce a unique $a \in A$ such that $D' \circ \tilde{f} = a \circ D$ by Proposition 1.2. Now if we let $D'' = a \circ D = D' \circ \tilde{f}$, then $\rho_{D''} = c_a \circ \rho_D$ by the above note. Furthermore,

$$\begin{split} \rho_{D'}(\tilde{f}\circ\tau)\circ D' &= D'\circ \tilde{f}\circ\tau = D''\circ\tau = \rho_{D''}(\tau)\circ D'' \\ &= \rho_{D''}(\tau)\circ D'\circ \tilde{f} = \rho_{D''}(\tau)\circ\rho_{D'}(\tilde{f})\circ D' \end{split}$$

implies $\rho_{D''}(\tau) = \rho_{D'}(\tilde{f} \circ \tau \circ \tilde{f}^{-1}) = \rho_{D'} \circ c_{\tilde{f}}(\tau)$, where $c_{\tilde{f}}$ is the conjugation by \tilde{f} . Hence we have

$$c_a \circ \rho_D = \rho_{D''} = \rho_{D'} \circ c_{\tilde{f}}.$$

Note that $c_{\bar{f}}:\Pi\to\Pi'$ is an isomorphism. Since M and M' are diffeomorphic, identifying Π and Π' , this argument shows that if two A-structures on M represented by developing maps D and D' are equivalent (by an A-diffeomorphism), then the associated holonomy representations ρ_D and $\rho_{D'}$ define a same equivalent class $[\rho_D]=[\rho_{D'}]\in A\backslash \mathrm{Hom}(\Pi,A)/\mathrm{Aut}(\Pi)$, where A acts on $\mathrm{Hom}(\Pi,A)$ on the left through conjugation and $\mathrm{Aut}(\Pi)$ acts on $\mathrm{Hom}(\Pi,A)$ as composition on the right. Note that these two actions commute trivially. Therefore we have a well-defined map Ψ from the moduli space of A-structures on M into the representation space $A\backslash \mathrm{Hom}(\Pi,A)/\mathrm{Aut}(\Pi)$ via holonomy representation. Of course, then the basic problems will be to determine the image and the fiber of Ψ . In general, these are quite difficult problems and we will discuss the fiber of Ψ in the subsequent sections especially for A-structures whose developments are covering maps.

2. A parametrization of A-structures at D

From now on, we will consider only A-structure on M whose development $D: \tilde{M} \to X$ is a covering map. Call such structure a covering A-structure in short. Since \tilde{M} has pull-back A-structure, D

is " Π -periodic", i.e., $\Pi \subset A_D(\tilde{M}) =$ the group of A-diffeomorphisms of \tilde{M} . Let Δ be the deck transformation group of the covering map $D: \tilde{M} \to X$. Then clearly we have the following short exact sequence of Lie groups:

$$(2.1) 1 \to \Delta \xrightarrow{i} A_D(\tilde{M}) \xrightarrow{\rho_D} A \to 1,$$

where i is the inclusion map and ρ_D is as defined in the previous section. In fact, (2.1) defines a unique Lie group structure on $A_D(\tilde{M})$ so that ρ_D becomes a covering homomorphism with ker $\rho_D = \Delta$.

We will fix a development D and then will parametrize A-structures on M by diffeomorphisms of \tilde{M} as follows. Suppose we have a covering A-structure whose development is $D': \tilde{M} \to X$. Then there exists a lifting $f: \tilde{M} \to \tilde{M}$ of identity $1_X: X \to X$ so that the following diagram commutes.

$$\tilde{M} \xrightarrow{f} \tilde{M}$$

$$D' \downarrow \qquad \qquad \downarrow D$$

$$X \xrightarrow{1_X} X$$

Clearly f is an A-map and $D' = D \circ f$ (= f^*D). Since D' is Π -periodic, for each $\tau \in \Pi$, $f \circ \tau \circ f^{-1} = c_f(\tau)$ is an A-diffeomorphism, and hence $c_f(\Pi) \subset A_D(\tilde{M})$. Note that if we use another lifting $f' = \delta \circ f$, $\delta \in \Delta$, then $c_{f'} = c_\delta \circ c_f : \Pi \to A_D(\tilde{M})$. Conversely, given any $f \in \text{Diffeo}(\tilde{M})$ with $c_f(\Pi) \subset A_D(\tilde{M})$, $D' = D \circ f$ will define an A-structure on \tilde{M} which is Π -periodic, i.e., each $\tau \in \Pi$ is an A-map, and hence defines an A-structure on M. Let's denote M with A-structure $D' = D \circ f$ by (M, f). Thus we can parametrize covering A-structures on M by

$$\mathcal{F}_D = \{ f \in \text{Diffeo}(\tilde{M}) \mid c_f(\Pi) \subset A_D(\tilde{M}) \}.$$

Let $N(\Pi) = N_{\text{Diffeo}(\tilde{M})}(\Pi)$ denote the normalizer of Π in the diffeomorphism group $\text{Diffeo}(\tilde{M})$ of \tilde{M} .

PROPOSITION 2.1. (a) (M, f) = (M, g), i.e., $id : (M, f) \to (M, g)$ is an A-diffeomorphism if and only if there is $\alpha \in A_D$ such that $g = \alpha \circ f$.

(b) (M, f) and (M, g) are A-diffeomorphic if and only if there exist $\alpha \in A_D(\tilde{M})$ and $h \in N(\Pi)$ such that $g \circ h = \alpha \circ f$.

Proof. Let $\bar{h}:(M,f)\to (M,g)$ be an A-diffeomorphism. Then a lifting of $\bar{h},h:\tilde{M}\to \tilde{M}$ is an A-diffeomorphism and normalizes II. By proposition 1.2, there exists $a\in A$ such that $a\circ (D\circ f)=(D\circ g)\circ h$. Hence $D\circ (g\circ h\circ f^{-1})=a\circ D$ and this shows that $\alpha=g\circ h\circ f^{-1}\in A_D(\tilde{M})$. The converse is obvious by reversing the argument. this proves (b), and (a) follows by letting h= identity.

The above proposition suggests us to define an action of $A_D = A_D(\tilde{M})$ on \mathcal{F}_D as left multiplication and an action of $N(\Pi)$ on \mathcal{F}_D as right multiplication. Note that for $\alpha \in A_D$ and $f \in \mathcal{F}_D$, we have $\alpha \circ f \in \mathcal{F}_D$ since $c_{\alpha \circ f} = c_{\alpha} \circ c_f : \Pi \to A_D$, and that for $f \in \mathcal{F}_D$ and $h \in N(\Pi)$, $f \circ h \in \mathcal{F}_D$ since $c_{f \circ h} = c_f \circ c_h : \Pi \to A_D$. Note also that $N(\Pi) \subset \mathcal{F}_D$ and $A_D \subset \mathcal{F}_D$ since $\Pi \subset A_D$. Therefore $A_D \setminus \mathcal{F}_D$ can be viewed as the space of covering A-structures on M and $A_D \setminus \mathcal{F}_D/N(\Pi)$ be the moduli space of covering A-structures on M parametrized at D, which will be denoted as \mathcal{M}_D .

Now let's see how holonomy representation looks like in this setting. Define $\psi: \mathcal{F}_D \to \operatorname{Hom}(\Pi, A)$ by $\psi(f) = \rho_D \circ c_f: \Pi \to A_D \to A$. Then $(\rho_D, \psi): (A_D, \mathcal{F}_D) \to (A, \operatorname{Hom}(\Pi, A))$ is equivariant since $\psi(af) = \rho_D \circ c_{af} = \rho_D \circ c_a \circ c_f = c_{\rho_D(a)} \circ \rho_D \circ c_f = c_{\rho_D(a)} \circ \psi(f)$, and hence ψ induces a quotient map : $A_D \setminus \mathcal{F}_D \to A \setminus \operatorname{Hom}(\Pi, A)$. Let $c: N(\Pi) \to \operatorname{Aut}(\Pi)$ be the conjugation defined by $c(f) = c_f$. Then $(\psi, c): (\mathcal{F}_D, N(\Pi)) \to (\operatorname{Hom}(\Pi, A), \operatorname{Aut}(\Pi))$ is also equivariant. Indeed, $\psi(f \circ h) = \rho_D \circ c_{fh} = \rho_D \circ c_f \circ c_h = \psi(f) \circ c_h$. This shows that ψ induces a map $\bar{\psi}: \mathcal{F}_D/N(\Pi) \to \operatorname{Hom}(\Pi, A)/\operatorname{Aut}(\Pi)$ and hence induces $\Psi: A_D \setminus \mathcal{F}_D/N(\Pi) \to A \setminus \operatorname{Hom}(\Pi, A)/\operatorname{Aut}(\Pi)$. Again the fore mentioned basic questions are to study the image and fiber of Ψ .

Let's pause at this point for a while to see what happens for "complete" case, i.e., when the developing map D is a diffeomorphism. In this case, we may identify \tilde{M} with X via D and all other covering developments become diffeomorphisms since X must be simply connected. Hence \mathcal{M}_D is the moduli space of complete A-structures on M. With this identification of \tilde{M} with X, $A_D = A$ and ρ_D becomes identity map. Then $\mathcal{F}_D = \{f \in \text{Diffeo}(X) \mid c_f : \Pi \to A\}$ and $\psi : \mathcal{F}_D \to \text{Hom}(\Pi, A)$ is defined simply by $\psi(f) = c_f$.

PROPOSITION 2.2("COMPLETE CASE"). If $c: N(\Pi) \to Aut(\Pi)$ is onto, then $\bar{\psi}: \mathcal{F}_D/N(\Pi) \to Hom(\Pi, A)/Aut(\Pi)$ is 1-1.

Proof. Suppose $\bar{\psi}\{f\} = \bar{\psi}\{g\}$. That is $c_f = \psi(f) = \psi(g) \circ \phi = c_g \circ \phi$ for some $\phi \in \operatorname{Aut}(\Pi)$. By the hypothesis, there is $h \in N(\Pi)$ such that $c_h = \phi$. Then $c_f = c_g \circ c_h$ implies $c_h = c_g^{-1} \circ c_f = c_{g^{-1} \circ f}$, and hence $g^{-1} \circ f \in N(\Pi)$.

COROLLARY 2.3 ("COMPLETE CASE"). If $c: N(\Pi) \to Aut(\Pi)$ is onto, then $\Psi: \mathcal{M}_D = A \setminus \mathcal{F}_D/N(\Pi) \to A \setminus Hom(\Pi, A)/Aut(\Pi)$ is 1-1.

Proof. This follows from the above proposition and a simple observation about the group action, which we will record as a Lemma below for later use also.

LEMMA 2.4. Let X be a G-space and Y be an H-space. If $\phi : G \to H$ is a surjective homomorphism and $f : X \to Y$ is an injective equivariant map (via ϕ), then the canonical induced map $\bar{f} : G \setminus X \to H \setminus Y$ is injective.

Proof. Let's denote the <u>G</u>-orbit of $x \in X$ by \bar{x} and similarly for H-orbit of $y \in Y$ by \bar{y} . $\overline{f(x)} = \bar{f}(\bar{x}) = \bar{f}(\bar{y}) = \overline{f(y)}$ implies that $f(x) = h \cdot f(y), h \in H$. Since ϕ is surjective, $h = \phi(g), g \in G$, and $f(x) = h \cdot f(y) = \phi(g) \cdot f(y) = f(g \cdot y)$ implies $x = g \cdot y$ by injectivity of f, whence $\bar{x} = \bar{y}$.

Let's go back to the more general case when D is a covering map. In this case, we obtain corresponding faithful maps using $\operatorname{Hom}(\Pi, A_D)$ instead of $\operatorname{Hom}(\Pi, A)$. Let $c: \mathcal{F}_D \to \operatorname{Hom}(\Pi, A_D)$ be the conjugation map $c(f) = c_f$ and $Z(\Pi)$ be the centralizer of Π in $\operatorname{Diffeo}(\tilde{M})$.

PROPOSITION 2.5. $c: \mathcal{F}_D/Z(\Pi) \to Hom(\Pi, A_D)$ is injective.

Proof. For $z \in Z(\Pi)$, $c_z = id$ and $c_{fz} = c_f \circ c_z = c_f$. This shows that the conjugation map c induces a well-defined map on $\mathcal{F}_D/Z(\Pi)$. If $c_f = c_g$, $c_{f^{-1}g} = c_f^{-1} \circ c_g = id$ and so $f^{-1} \circ g \in Z(\Pi)$.

Furthermore, $c: (A_D, \mathcal{F}_D/Z(\Pi)) \to (A_D, \operatorname{Hom}(\Pi, A_D))$ is equivariant and hence induces a 1-1 map (by Lemma 2.4),

$$\bar{c}: \mathcal{T}_D = A_D \backslash \mathcal{F}_D / Z(\Pi) \to A_D \backslash \mathrm{Hom}(\Pi, A_D).$$

The space \mathcal{T}_D will be called the deformation space (of covering A-structures) parametrized at D. Note that if we let $Q = N(\Pi)/Z(\Pi)$, then $\mathcal{T}_D/Q = \mathcal{M}_D = A_D \backslash \mathcal{F}_D/N(\Pi)$. Also notice that we have an exact sequence,

$$1 \to Z(\Pi) \to N(\Pi) \xrightarrow{c} \operatorname{Aut}(\Pi).$$

Again by Lemma 2.4, we have

PROPOSITION 2.6. If $c: N(\Pi) \to Aut(\Pi)$ is onto, then $(\bar{c}, c): (\mathcal{T}_D, Q) \to (A_D \setminus Hom(\Pi, A_D), Aut(\Pi))$ is equivariant and induces an 1-1 map : $\mathcal{M}_C \to A_D \setminus Hom(\Pi, A_D)/Aut(\Pi)$.

This proposition shows that in order to determine the fiber of Ψ : $\mathcal{M}_D \to A \backslash \mathrm{Hom}(\Pi, A) / \mathrm{Aut}(\Pi)$, we want to know the relation between $\mathrm{Hom}(\Pi, A)$ and $\mathrm{Hom}(\Pi, A_D)$.

3. $\operatorname{Hom}(\Pi, A_D)$ and $\operatorname{Hom}(\Pi, A)$

Recall (2.1) that we have a short exact sequence of Lie groups,

$$(3.1) 1 \to \Delta \xrightarrow{i} A_D \xrightarrow{\rho} A \to 1$$

where $\rho = \rho_D$ and $\Delta = \ker \rho$ is also the deck transformation group of a covering development $D: \tilde{M} \to X$. From this, it is not hard to imagine "exactness" of associated Hom-sequence of sets,

$$(3.2) 1 \to \operatorname{Hom}(\Pi, \Delta) \xrightarrow{i_{\bullet}} \operatorname{Hom}(\Pi, A_{D}) \xrightarrow{\rho_{\bullet}} \operatorname{Hom}(\Pi, A).$$

Indeed, i_* is clearly 1-1 and $\rho_* \circ i_*$ maps to a trivial representation. For any $\phi \in \operatorname{Hom}(\Pi, A_D)$ with $\rho_*(\phi) = \rho \circ \phi$ being trivial, certainly $\phi \in \operatorname{Hom}(\Pi, \Delta)$. We want to be more precise about the fibration nature of (3.2) to show that ρ_* is a covering map with fiber $\operatorname{Hom}(\Pi, \Delta)$ under some conditions. For a Lie group G, we will always give compact-open topology for $\operatorname{Hom}(\Pi, G)$ and discrete topology for Π and Δ . First of all, it is easy to see that the continuity of ρ_* from the following well-known observation.

LEMMA 3.1. Let $f: Y \to Z$ be a continuous map of topological spaces and X be a locally compact, Hausdorff space. Then $f_*: Y^X \to Z^X$ given by $f_*(\phi) = f \circ \phi$, $\phi \in Y^X$ is continuous with respect to compact-open topology on Y^X and Z^X .

Proof. Since X is locally compact, Hausdorff, f_* is continuous if the associated map $\bar{f}_*: X \times Y^X \to Z$ given by $\bar{f}_*(x,\phi) := f_*(\phi)(x)$ is continuous. Note that $\bar{f}_* = f \circ ev : X \times Y^X \to Y \to Z$, where $ev(x,\phi) = \phi(x)$. As is well-known, ev is continuous and follows the continuity of \bar{f}_* .

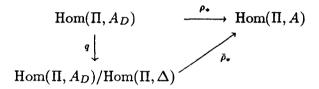
Let's assume for simplicity that A_D is connected deferring the general case to a subsequent paper. Since Δ is a discrete normal subgroup of a connected Lie group A_D , Δ is central and (3.1) is a central extension. Now $\operatorname{Hom}(\Pi, \Delta)$ becomes an abelian group and define an action of $\operatorname{Hom}(\Pi, \Delta)$ on $\operatorname{Hom}(\Pi, A_D)$ by $(d \cdot \Phi)(\tau) = d(\tau) \cdot \phi(\tau)$ for $d \in \operatorname{Hom}(\Pi, \Delta)$ and $\phi \in \operatorname{Hom}(\Pi, A_D)$. Note that $d \cdot \phi$ is a homomorphism: $\Pi \to A_D$ since Δ is central and $\Pi \subset A_D$. Furthermore, this action is clearly free. The fiber of ρ_* is exactly $\operatorname{Hom}(\Pi, \Delta)$ -orbit and the quotient map to the orbit space can be identified with ρ_* . Indeed, if $\rho \circ \phi = \rho \circ \phi'$ for ϕ , $\phi' \in \operatorname{Hom}(\Pi, A_D)$, then $d(\tau) = \phi'(\tau) \cdot \phi(\tau)^{-1} \in \Delta$ is a homomorphism: $\Pi \to A_D$ since Δ is central. Now the following theorem looks obvious.

THEOREM 3.2. Suppose A_D is connected and Π is finitely generated. Then the action: $\operatorname{Hom}(\Pi, \Delta) \times \operatorname{Hom}(\Pi, A_D) \to \operatorname{Hom}(\Pi, A_D)$ given by $\mu(d, \phi) = d \cdot \phi$ is a covering action, and the covering projection can be identified with the map $\rho_* : \operatorname{Hom}(\Pi, A_D) \to \rho_*(\operatorname{Hom}(\Pi, A)) \subset \operatorname{Hom}(\Pi, A)$ as a set function.

Proof. From the above discussion, it suffices to show that for each $\phi \in \operatorname{Hom}(\Pi, A_D)$, we can choose an open neighborhood W of ϕ such that $d \cdot W \cap W$ is empty for all non-trivial $d \in \operatorname{Hom}(\Pi, \Delta)$. Since Δ is a discrete subgroup of A_D , there exists an open neighborhood V_1 of e in A_D disjoint from the non-trivial element of Δ and $\rho|_{V_1}$ is a diffeomorphism onto an open set $\rho(V_1) \subset A$. Let $V \subset V_1$ be a neighborhood of e with the property $V \cdot V^{-1} \subset V_1$. Let $U(\tau) = V \cdot \phi(\tau)$ and $W = \bigcap_{i=1}^n S(\tau_i, U(\tau_i))$, where $\{\tau_1, \cdots, \tau_n\}$ is a set of generators of Π , and S(K, U) stands for subbasic open set in the compact-open topology for A_D^{Π} whose element sends a compact $K \subset \Pi$ into an open

 $U \subset A_D$. If $\psi \in d \cdot W \cap W$, $\psi = d \cdot \psi'$ for some $\psi' \in W$, and this implies that $d(\tau_i)\psi'(\tau_i) = \psi(\tau_i) \in U(\tau_i) = V \cdot \phi(\tau_i)$ and $\psi'(\tau_i) \in V \cdot \phi(\tau_i)$ for $i = 1, 2, \dots, n$. Now $d(\tau_i) = \psi(\tau_i)\psi'(\tau_i)^{-1} = v \cdot \phi(\tau_i) \cdot (v' \cdot \phi(\tau_i))^{-1} = v \cdot v'^{-1}$ for some $v, v' \in V$. Hence $d(\tau_i) \in V_1 \cap \Delta = \{e\}$ and $d(\tau_i) = e$ for $i = 1, \dots, n$, i.e., d is trivial.

REMARK 3.3. In general, it is not clear whether the quotient map q of $\operatorname{Hom}(\Pi, A_D)$ onto its orbit space $\operatorname{Hom}(\Pi, A_D)/\operatorname{Hom}(\Pi, \Delta)$ can be topologically identified with ρ_* . In the following commutative diagram, theorem 3.2 says q is a covering map and the induced map $\bar{\rho}_*$ is a continuous injection.



 $\bar{\rho}_*$ becomes an embedding for instance if A_D is compact, since the variety of representation $\operatorname{Hom}(\Pi, A_D)$ is compact. If A_D is abelian, or Π is a free or free abelian, it can be modified in the proof of Theorem 3.2 to show that $\rho_*(W)$ is open in $\rho_*(\operatorname{Hom}(\Pi, A_D))$ and hence $\bar{\rho}_*$ becomes an embedding and we can identify q with ρ_* topologically.

References

- [Go] W. M. Goldman, Geometric structures on manifolds and varieties of representations, Geometry of group representations, Contemporary Math. 74(1988).
- [Ku] R. Kulkarni, The principle of uniformizations, J. Diff. Geom. 13(1978), 109-138.
- [NY] T. Nagano and K. Yagi, The affine structures on the real two-torus, Osaka J. Math. 11(1974), 181-210.
- [Th] W. Thurston, The geometry and topology of 3-manifolds, Princeton University mimeographed notes, 1977.

Department of Mathematics Seoul National University Seoul 151-742, Korea