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SPACE OF GEOMETRIC STRUCTURES
WHOSE DEVELOPMENTS ARE COVERINGS

Hyuxk KM

0. Introduction

Let X be a smooth manifold and A be a Lie group of diffeomor-
phisms of X with “analytic nature”. A smooth manifold M has a
(X, A)-structure (or an A-structure, in short) if it admits an atlas
whose coordinate transitions belong to A, and in this case, M is said
to be locally modelled on (X, A). The examples of A-structures in our
mind are the classical space forms and various flat structures such as
affinely, projectively and conformally flat structures. We can associate
the well known model space X and Lie group A appropreately for each
of these examples. Yet the notion of A-structure is much broader as
we can choose, for instance, any Riemannian manifold X and a group
of isometries of X as A.

For a given (X, A), the fundamental questions are to determine
the manifolds admitting A-structures and to describe the space of A-
structures on a given manifold M. The deformation space or the mod-
uli space are sometimes studied in conjunction with the representation
variety Hom(7, A), n = m1(M), via the holonomy representation. This
approach is especially useful when the developing map defined on a
universal covering M of M is a diffeomorphism onto X so that A-
structure is complete. In this case, a subset of A\Hom(w, A)/Aut(r)
(resp. A\Hom(x, A)) faithfully parametrize the A-structure on M up
to A-equivalence (resp. A-equivalence homotopic to identity). How-
ever if A-structure is not complete, in a lot of important cases, the
developing map becomes a covering map, and we intend to study the
deformation sapce of A-structures in this case.

When the developing map D is a covering, A can be lifted to Ap,
the group of A-automorphisms on M. Then the canonical projection
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of Ap onto A is a covering homomorphism with the kernel A which
is the desk transformation group for D. We show in this paper that
a subset of Ap\Hom(x,Ap)/Aut(n) (resp. A\Hom(x, A4)) is in 1-1
correspondence with the moduli space (resp. the deformation space)
of A-structures whose developing map is a covering, and then show
that the canonical projection of Ap onto A induces a covering map
from the representation space Hom(w, Ap) into Hom(x, A) with fiber
Hom(7, A) under some conditions.

1. Basic concepts

In this section, we will set up some basic facts and rudiments for
geometric structures for later use. (See also [Go], [Ku], [NY] and [Th]
for more about A-structures.)

Let X be a model smooth manifold and A be a Lie group consisting
of diffeomorphisms of X which are uniquely determined by local data,
i.e., for any a,b € A, a]y = b|y for a non-empty open set U C X implies
a = b. An A-structure on a smooth manifold M is a maximal atlas
{(Ua,pa)}, where ¢, : Uy — X is a smooth coordinate chart, called an
A-chart, such that goa-cpEI t 9, (UaNUg) — pa(UaNUg) is a restriction
of an element gog of A. A manifold with an A-structure is called an
A-manifold. Let M and N be A-manifolds. A map f: M — N is
called an A-map if it is represented locally by an element of A, i.e.,
for any £ € M, there are A-charts (U,,9q) on M and (V3,¥g) on N
containing z and f(z) respectively such that wgo fop ! is a restriction
of an element of A. Note that an A-map is a local diffeomorphism.

PROPOSITION 1.1. A-map of a connected A-manifold M into an
A-manifold N is uniquely determined by local data, ie., if f, g are
A-maps : M — N with flv = glv for some non-empty open U C M,
then f = g.

Proof. Let W be a maximal open set contained in M on which f
and g agree. For any z € W, choose an A-chart (Ua,@a) at £ such
that f and g are represented locally as a, b € A respectively on q(Uq).
Since f and g agree on a non-empty open set WNU,, a = b and hence
f =g on WUU,. By maximality of W, U, C W. This shows that

W =W and hence W = M by connectedness of M.

The above proposition says that an A-map of a connected manifold
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M into X is completely determined by local data if it exists. An A-
map D : M — X, if exists, is called a developing map. In general, a
developing map exists on an A-manifold M, if M is simply connected,
by the usual analytic continuation argument. Therefore to develop a
given A-manifold M, we will use the universal covering M of M with
the pull-back A-structure.

PROPOSITION 1.2. Let M and M' be connected A-manifolds which
have developing map D and D’ respectively. For any A-map f: M —
M', there exists a unique a € A such thataoD = D'o f.

Proof. There certainly exists such a € A that ao D = D' o f holds
on a small open set U of M. Now ao D and D' o f are both A-maps of
M into X which agree on an open set U, and hence are identical maps
by proposition 1.1.

In particular, if f =id on M, Proposition 1.2 says that developing
maps defined on M are essentially unique up to A.

Hence A-structures on a simply connected manifold M can be para
metrized by the equivalence classes of developing maps {D}, i.e., D' €
{D} ff D' = ao D for some a € A. Note also that an A-structure on
simply connected M defines an immersion D : M — X, a developing
map, and conversely any immersion D : M — X defines an A-structure
on M by the pull-back structure.

Let M be a connected A-manifold. We will fix a universal covering
space M of M and the deck transformation group II. The pull-back 4-
structure gives rise to a developing map D : M — X, and any A-map
f of M into itself will assign a unique a € A such that ao D = Do f
by Proposition 1.2. We will denote this unique a by pp(f) so that
pp(f)oD = Do f Let AD(M) be the group of A-diffeomorphisms
of M. Then pp : Ap(M) — A is clearly a homomorphism since
pp(fog)oD=Dofog=pp(f)oDog=pp(f)opp(g)o D and an
element of A4 is uniquely determined by local data. The pull-back A-
structure on M is Il-periodic and hence IT C Ap(M). The restriction
of pp on II is called the holonomy representation of an A-structure of
M.

Note that if we use another developing map D' = ao D, a € A, the
holonomy representation with respect to D’ will be pp(7) = paop(7) =
aopp(r)oa=! =c,0pp(r), 7 € Il, where ¢, is the conjugation by a.
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Indeed, aopp(r)oD =aoDor = D'or = pp(7)oD' = pp:(t)oaocD
implies that a o pp(7) = ppr(7) o a since they agree locally.

Let M’ be another A-manifold with a universal covering M' and the
deck transformation group II'. Suppose we have a A-diffeomorphism
f: M — M'. Choose a lifting of f, f : M — M’, then f will induce
a unique a € A such that D' o f = a o D by Proposition 1.2. Now if
welet D" =aoD =D'o f, then pp» = ca © pp by the above note.
Furthermore,

pD'(iOT)OD,:'DIO‘fOT=D"0T=pDu(r)oD”
= pou(r)o D' o f = pou(r) 0 por(o D’

implies ppi(r) = pp(foro f~1) = pp o cj(7), where c; is the
conjugation by f. Hence we have

Ca O Pp = pp" = pp’ OCf-

Note that c; : I — II' is an isomorphism. Since M and M’ are
diffeomorphic, identifying II and II', this argument shows that if two
A-structures on M represented by developing maps D and D' are equiv-
alent (by an A-diffeomorphism), then the associated holonomy repre-
sentations pp and pp define a same equivalent class [pp] = [pp/] €
A\Hom(II, A)/Aut(IT), where A acts on Hom(II, A) on the left through
conjugation and Aut(Il) acts on Hom(II, A) as composition on the
right. Note that these two actions commute trivially. Therefore we
have a well-defined map ¥ from the moduli space of A-structures on
M into the representation space A\Hom(II, A)/Aut(II) via holonomy
representation. Of course, then the basic problems will be to deter-
mine the image and the fiber of ¥. In general, these are quite difficult
problems and we will discuss the fiber of ¥ in the subsequent sections
especially for A-structures whose developments are covering maps.

2. A parametrization of A-structures at D

From now on, we will consider only A-structure on M whose de-
velopment D : M — X is a covering map. Call such structure a
covering A-structure in short. Since M has pull-back A-structure, D
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is “II-periodic”, ie., 1 C 4 D(M ) = the group of A-diffeomorphisms
of M. Let A be the deck transformation group of the covering map
D : M — X. Then clearly we have the following short exact sequence
of Lie groups :

(2.1) 15 A5 Ap(i) 25 a1,

where ¢ is the inclusion map and pp is as defined in the previous section.
In fact, (2.1) defines a unique Lie group structure on Ap(M) so that
pD becomes a covering homomorphism with ker pp = A.

We will fix a development D and then will parametrize A-structures
on M by diffeomorphisms of M as follows. Suppose we have a covering
A-structure whose development is D' : M — X. Then there exists
a lifting f : M — M of identity 1x : X — X so that the following

diagram commutes.
~ f ~
M-—M

o| |

x X, x

Clearly fis an A-map and D' = Dof (= f*D). Since D’ is II-periodic,
foreach 7 € II, foro f~! = ¢4(7) is an A-diffeomorphism, and hence
cs(Il) C Ap(M). Note that if we use another lifting f' =60 f, 6 € A,
then cpr = csocs: I — Ap(M). Conversely, given any f € Diffeo( M)
with c;(II) € Ap(M), D' = D o f will define an A-structure on M
which is II-periodic, i.e., each 7 € II is an A-map, and hence defines
an A-structure on M. Let’s denote M with A-structure D' = Do f by
(M, f). Thus we can parametrize covering A-structures on M by

Fp = {f € Diffeo( M) | cs(II) C Ap(M)}.
Let N(II) = Np,geo(s7)(I1) denote the normalizer of II in the diffeo-
morphism group Diffeo(M) of M.

PROPOSITION 2.1. (a) (M, f) = (M,g),1e,id: (M, f)— (M,g) is
an A-diffeomorphism if and only if there is o € Ap such that g = ao f.
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(b) (M, f) and (M, g) are A-diffeomorphic if and only if there exist
a € Ap(M) and h € N(II) such that goh =ao f.

Proof. Let h : (M, f) — (M,g) be an A-diffeomorphism. Then a
lifting of h, h : M — M is an A-diffeomorphism and normalizes Il: By
proposition 1.2, there exists a € A such that ao(Do f) =(Dog)oh.
Hence Do(goho f~') = ao D and this shows that a =goho f} ¢
Ap(M). The converse is obvious by reversing the argument. this
proves (b), and (a) follows by letting A = identity.

The above proposition suggests us to define an action of Ap =
Ap(M) on Fp as left multiplication and an action of N(II) on Fp
as right multiplication. Note that for « € Ap and f € Fp, we have
ao f € Fp since caof = ca0cy : Il = Ap, and that for f € Fp and
h e N(II), foh € Fp since cgop = cf0ocp : I = Ap. Note also that
N(II) C Fp and Ap C Fp since Il C Ap. Therefore Ap\Fp can be
viewed as the space of covering A-structures on M and Ap\Fp/N(II)
be the moduli space of covering A-structures on M parametrized at D,
which will be denoted as Mp.

Now let’s see how holonomy representation looks like in this set-
ting. Define ¢ : Fp — Hom(Il, 4) by ¥(f) = ppocy : 1l - Ap —
A. Then (pp,¥) : (Ap,Fp) — (A,Hom(Il, A)) is equivariant since
1/)(af) = PD O Caf = Pp 0 € O Cp = Cop(a) OPD O Cfr = Cpp(a) Q ¢(f),
and hence ¢ induces a quotient map : Ap\Fp — A\Hom(II, A). Let
¢ : N(ITI) - Aut(IT) be the conjugation defined by ¢(f) = ¢s. Then
(¥,¢) : (Fp,N(II)) — (Hom(Il, A), Aut(I)) is also equivariant. In-
deed, ¥(fo h) = ppocsn = ppocgocy = P(f)ocs This shows
that ¢ induces a map 9 : Fp/N(II) - Hom(II, A)/Aut(II) and hence
induces ¥ : Ap\Fp/N(Il) - A\Hom(Il, A)/Aut(II). Again the fore
mentioned basic questions are to study the image and fiber of W.

Let’s pause at this point for a while to see what happens for “com-
plete” case, i.e., when the developing map D is a diffeomorphism. In
this case, we may identify M with X via D and all other covering devel-
opments become diffeomorphisms since X must be simply connected.
Hence Mp is the moduli space of complete A-structures on M. With
this identification of M with X, Ap = A and pp becomes identity map.
Then Fp = {f € Diffeo(X) |cs : I - A} and ¥ : Fp — Hom(Il, A) is
defined simply by ¢(f) = cy.
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PROPOSITION 2.2(“COMPLETE CASE”). If ¢ : N(II) — Aut(Il) is
onto, then ¢ : Fp/N(Il) —» Hom(Il, A)/Aut(Il) is 1-1.

Proof. Suppose ${f} = #{g). That is c; = ¥(f) = (g)0d = ¢, 06
for some ¢ € Aut(IT). By the hypothesis, there is h € N(II) such that
ch = ¢. Then ¢5 = ¢4 0 ¢y 1mplies ¢ = cg‘l 0 cf = ¢4-105, and hence
g~ 1o fe N(I).

COROLLARY 2.3(“COMPLETE CASE”). If ¢ : N(II) — Aut(Il) is
onto, then ¥ : Mp = A\Fp/N(I1) — A\Hom(Il, A)/Aut(1l) is 1-1.

Proof. This follows from the above proposition and a simple obser-
vation about the group action, which we will record as a Lemma below
for later use also.

LEMMA 2.4. Let X be a G-space and Y be an H-space. If ¢ :
G — H is a surjective homomorphism and f : X — Y is an injective
equivariant map (via ¢), then the canonical induced map f : G\X —
H\Y is injective.

Proof. Let’s denote the G-orbit of z € X by Z and similarly for
H-orbit of y € Y by . f(z) = f(Z) = f(§) = f(y) implies that
f(z) = h- f(y), h € H. Since ¢ is surjective, h = ¢(g), ¢ € G, and
f(z) =h-f(y) = é(g) - f(y) = f(g- y) implies z = g - y by injectivity
of f, whence z = 7.

Let’s go back to the more general case when D is a covering map.
In this case, we obtain corresponding faithful maps using Hom(Il, Ap)
instead of Hom(II, A). Let ¢ : Fp — Hom(Il, Ap) be the conjugation
map ¢(f) = ¢5 and Z(II) be the centralizer of II in Diffeo(M).

PROPOSITION 2.5. ¢: Fp/Z(Il) — Hom(Il, Ap) is injective.

Proof. For z € Z(Il), ¢, = id and ¢5, = ¢y o0 ¢, = cs. This shows
that the conjugation map ¢ induces a well-defined map on Fp/Z(II).
Kep=cycporg= c;l ocy =id and so f~'og € Z(II).

Furthermore, ¢ : (Ap,Fp/Z(11)) — (Ap, Hom(Il, Ap)) is equivari-
ant and hence induces a 1-1 map (by Lemma 2.4),

¢:7Tp = Ap\Fp/Z(1l) - Ap\Hom(Il, Ap).
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The space Tp will be called the deformation space (of covering A-
structures) parametrized at D. Note that if we let Q@ = N(II)/Z(1I),
then Tp/Q = Mp = Ap\Fp/N(II). Also notice that we have an

exact sequence,
1 — Z(II) — N(II) — Aut(I).

Again by Lemma 2.4, we have

PROPOSITION 2.6. If ¢ : N(II) — Aut(Il) is onto, then (i,c) :
(7Tp,Q) — (Ap\Hom(II, Ap), Aut(Il}) is equivariant and induces an
1-1 map : Mc — Ap\Hom(Il, Ap)/Aut(1I).

This proposition shows that in order to determine the fiber of ¥ :
Mp — A\Hom(II, A)/Aut(Il), we want to know the relation between
Hom(II, A) and Hom(I1, Ap).

3. Hom(Il, Ap) and Hom(II, A)
Recall (2.1) that we have a short exact sequence of Lie groups,

(3.1) ]—)A;AD—iA—)].

where p = pp and A = kerp is also the deck transformation group
of a covering development D : M — X. From this, it is not hard to
imagine “exactness” of associated Hom-sequence of sets,

(32) 1 — Hom(Il, A) — Hom(II, Ap) — Hom(II, A).

Indeed, i, is clearly 1-1 and p. o 7, maps to a trivial representation.
For any ¢ € Hom(Il, Ap) with p.(¢) = p o ¢ being trivial, certainly
¢ € Hom(II, A). We want to be more precise about the fibration nature
of (3.2) to show that p, is a covering map with fiber Hom(II, A) under
some conditions. For a Lie group G, we will always give compact-open
topology for Hom(I1, G) and discrete topology for IT and A. First of all,
it is easy to see that the continuity of p, from the following well-known
observation.



Space of geometric structures whose developments are coverings 165

LEMMA 3.1. Let f : Y — Z be a continuous map of topological
spaces and X be a locally compact, Hausdorff space. Then f,: Y X —
ZX given by f.(¢) = fod, ¢ € YX is continuous with respect to
compact-open topology on YX and ZX.

Proof. Since X is locally compact, Hausdorff, f, is continuous if
the associated map f, : X x YX — Z given by fu(z,¢) := f.(é)(z)
is continuous. Note that f, = foev: X xYX — Y — Z, where
ev(z,d) = ¢(x). As is well-known, ev is continuous and follows the
continuity of f,.

Let’s assume for simplicity that Ap is connected deferring the gen-
eral case to a subsequent paper. Since A is a discrete normal subgroup
of a connected Lie group Ap, A is central and (3.1) is a central ex-
tension. Now Hom(II,A) becomes an abelian group and define an
action of Hom(II, A) on Hom(II, Ap) by (d - ®)(7) = d(r) - ¢(7) for
d € Hom(II, A) and ¢ € Hom(Il, Ap). Note that d - ¢ is a homomor-
phism : IT — Ap since A is central and II C Ap. Furthermore, this
action is clearly free. The fiber of p, is exactly Hom(II, A)-orbit and
the quotient map to the orbit space can be identified with p.. Indeed,
if pod =pog' for ¢,¢' € Hom(Il, Ap), then d(r) = ¢'(7)- (7))~ € A
i1s a homomorphism : II — Ap since A is central. Now the following
theorem looks obvious.

THEOREM 3.2. Suppose Ap is connected and Il is finitely gener-
ated. Then the action : Hom(Il,A) x Hom(II,Ap) — Hom(II, Ap)
given by u(d, ¢) = d- ¢ is a covering action, and the covering projection
can be identified with the map p, : Hom(Il, Ap) — p.(Hom(II, A)) C
Hom(Il, A) as a set function.

Proof. From the above discussion, it suffices to show that for each
¢ € Hom(II, Ap), we can choose an open neighborhood W of ¢ such
that d - W N W is empty for all non-trivial d € Hom(II,A). Since
A is a discrete subgroup of Ap, there exists an open neighborhood
Vi of e in Ap disjoint from the non-trivial element of A and p|y, is
a diffeomorphism onto an open set p(Vi) C A. Let V C V) be a
neighborhood of e with the property V-V~ C V4. Let U(7) = V - ¢(7)
and W = N, S(7,,U(7i)), where {71, -+ ,7,} is a set of generators
of II, and S(K,U) stands for subbasic open set in the compact-open
topology for A} whose element sends a compact K C II into an open



166 Hyuk Kim

UCAp. ¢y € d-WNW, ¢ = d-1' for some ' € W, and this implies
that d(r)y' () = ¥(n:) € U(ri) = V - §(7;) and ¢'(7:i) € V - (i) for
i=12.--,n Nowd(n) =)' (mn) =v-¢(n) - (v'-(r)) ' =
v-v'~! for some v,v' € V. Hence d(r;) € Vi N A = {e} and d(r:) = e
fori=1,---,n,ie., dis trivial.

REMARK 3.3. In general, it is not clear whether the quotient map
g of Hom(II, Ap) onto its orbit space Hom(Il, Ap)/Hom(II, A) can be
topologically identified with p,. In the following commutative diagram,
theorem 3.2 says ¢ is a covering map and the induced map p. is a
continuous injection.

Hom(I1, Ap) 2, Hom(II, 4)

o| g
Pe

Hom(I, Ap)/Hom(II,A)

p« becomes an embedding for instance if Ap is compact, since the
variety of representation Hom(II, Ap) is compact. If Ap is abelian, or
Il is a free or free abelian, it can be modified in the proof of Theorem 3.2
to show that p.(W) is open in p.(Hom(Il, Ap)) and hence 5. becomes
an embedding and we can identify ¢ with p, topologically.
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