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ON MUTATIONS OF ASSOCIATIVE ALGEBRAS

ALBERTO ELDUQUE* AND FERNANDO MONTANER**

1. Introduction

Let A be an arbitrary associative algebra over a field F, multiplica
tion denoted by juxtaposition, and let p, q be two fixed elements of A.
Then a new algebra is derived from A by using the same vector space
structure of A but defining a new multiplication

x * y = xpy - yqx

for x, y in A. The resulting algebra is denoted by A(p, q) and called
the (P, q)-mutation of the algebra A.

These algebras have been studied by several mathematicians and
physicists (see [6] and references there in).

The overall objective of this paper is the investigation of the struc
ture of the mutations of (left or right) artinian associative algebras.
We will find out the existence for these algebras of a largest solvable
ideal. The quotient algebra modulo this ideal will be shown to be a
direct sum of ideals which are either simple algebras of a determined
form (not necessarily mutation algebras) or semisimple Lie algebras
with simple derived algebras.

The second section will be devoted to find necessary and sufficient
conditions for a mutation algebra to be prime or simple. Then in
the third section the mutations of simple artinian associative algebras
will be studied. Finally, those previous results will be used in the
fourth section to investigate mutations of arbitrary artinian associative
algebras.

In what follows, the characteristic of the fields will be always as
sumed to be different from 2.
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We will make use of several other algebras derived from old ones.
First of all, if we take q = 0 in (*), the resulting algebra is associative
and is termed the p-homotope of A, denoted by A(P).

Next, let B be any nonassociative algebra with multiplication de
noted by xy. Associated with B there are an anticommutative algebra
B-, defined on the same vector space but multiplication given by

[x, y] = xy - yx,

and a commutative algebra B+ with multiplication

1
x 0 y = "2(x y + yx).

The algebra B is termed Lie-admi3sible in case B- is a Lie algebra,
and is termed Jordan-admissible in case B+ is a Jordan algebra. It is
well-known that associative algebras are Lie and Jordan-admissible.

A straightforward calculation shows that A(p, q)- = A(p +q)- and
A(p, q)+ = A(p - q)+. Hence any mutation algebra is also Lie and
Jordan-admissible.

2. Prime and simple mutation algebras

We begin with an easy statement: if A(p, q) is prime or simple, so
is A. Actually, any ideal of A is also an ideal of A(p, q), hence the
simplicity of A(p,q) implies the simplicity of A. Now, if there are
nonzero ideals B I , B2 of A with BIB2 = 0, then either B2BI = 0 and,
in consequence, B 1 * B2 = 0 in A(p, q), or 0 =I- B = B2BI ~ BI n B2
verifies B 2 = B * B = O. Thus, if A(p, q) is prime, so is A.

It is shown in [7] that for invertible elements p and q,p 1= q, in the
associative algebra A, the mutation A(p, q) is prime or simple if and
only if so is A. On the other hand, if A(p, q) has a unit element then,
as proved in [1], A(p,q) is prime or simple if and only if so is A.

Since the existence of unit element in A(p, q) is equivalent to p - q
being invertible and (p - q)-lp central, the results above provide suffi
cient conditions on the elements p and q of a prime or simple associa
tive algebra that guarantee the mutation algebra A(p, q) to be prime
or simple.

We will find in this section necessary and sufficient conditions on the
elements p and q of a prime (respectively simple) associative algebra
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A for the mutation A(p,q) to be prime (respectively simple), provided
p # q.

In case p = q, the algebra A(p, q) coincides with A(p)-, so it is the
minus algebra of an associative algebra. If, for instance, A is a finite
dimensional algebra, then it can be shown that A(p)- is never prime
nor simple (see Theorem 3.6 and the remarks following it).

So the case p = q will be excluded in most of our considerations in
this section.

The next Lemma is essentially the same as in [7; Lemma 3.1]:

LEMMA 2.1. Let A be a prime associative algebra and let p, q be
any fixed elements of A witb p + q # O. Tben:

1) The subspace C spanned by the set {xpy + yqx : x, yEA}
contains a nonzero ideal of A.

2) If B is a nonzero ideal of A(p, q), then there is a nonzero ideal
D of A such that D(p - q)B and B(p - q)D are contained in
B.

3) If B is a nonzero ideal of A(p, q), then either it contains a
nonzero ideal of A or (p - q)B(p - q) = O.

For an element u of the associative algebra A, we shall denote by
r(u) (respectively l( u)) the right (respectively left) annihilator of u in
A. That is, r(u) = {x EA; ux = O} and l(u) = {x EA: xu = O}.

LEMMA 2.2. Let A be a prime associative algebra, let p, q be any
fixed elements of A witb p + q # 0 # p - q, and let B be an ideal of
A(p,q) with (p - q)B(p - q) = O. Tben B(p - q) c; rep) n r(q) and
(p - q)B c; l(p) n l(q).

Proof. By Lemma 2.1 there is a nonzero ideal D of A such that
B(p - q)D c; B. Therefore (p - q)(ApB(p - q)D)(p - q) c; (p - q)(A *
B)(p - q) + (p - q)B(p - q)DqA(p - q) = 0, so pB(p - q) = 0 by
primeness. Hence B(p - q) c; rep). The other assertions are proved in
a similar way.

PROPOSITION 2.3. Let A be a prime associative algebra, let p, q
be any fixed elements of A with p # q and let B be a nonzero ideal of
A(p, q). Then eitber B contains a nonzero ideal of A or B is contained
in the set R(p, q) = {x EA: pxp = pxq = qxp = qxq = O}.



146 Alberto Elduque and Fernando Montaner

Proof. In case p # -q we may assume by the previous lemmas that
pB(p - q) = qB(p - q) = (p - q)Bp = (p - q)Bq = O. Now for u E B
andxEA

0= p(u * x)(p - q) = pupx(p - q) - pxqu(p - q) = pupx(p - q).

Hence ApBpA(p - q)A = 0 and, by primeness, pBp = O. The other
assertions follow in the same way.

In case p = -q(# 0), A(p,q) = A(p)+. Following the argument in
[7; page 911], any ideal of A(p)+ contains ApupupA for u in B. Now
if pupup = 0 for all u E B we get pupApup = 0 for all u E B and, by
the primeness of A, pup = 0 for all u = B.

Taking into account that the homotope A(p) equals the mutation
algebra A(p, 0), Proposition 2.3 and [7; page 913] we get:

LEMMA 2.4. Let A be an associative algebra and p a fixed element
of A. Then:

1) A(P) is prime if and only if A is prime and p is not a zero
divisor of A.

2) A+ is prime if and only if so is A.

The next Theorem represents the main result of this section:

THEOREM 2.5. Let A be an associative algebra and let p, q be fixed
elements of A with p # q. Then A(p, q) is prime (respectively simple)
if and only if A is prime (respectively simple) and R(p, q) = O.

Proof. Let us assume that A is prime, R(p, q) = 0 and A(p, q) is not
prime. Then there are nonzero ideals B I , B2 of A(p, q) with B I *B 2 =
O. If B I n B 2 = 0 we would obtain, by Proposition 2.3, nonzero ideals
D I , D2 of A with D I n D2 = 0, so DI D2 = 0, a contradiction. If
B = B I n B 2 # 0, again by Proposition 2.3 there is a nonzero ideal
D of A with D ~ B, so D * D = O. Then for any u, v in D we get
upv = vqu.

Now, for u, v in D and x in r(p - q) we have

(xu)(P - q)v = (xu )pv - (xu )qv = vq(xu) - vp(xu) = -v(p - q)xu = 0,

so r(p - q)D(P - q)D = 0 and the primeness of A imply r(p - q) = O.
In the same way we have l(p - q) = 0, so p - q is not a zero divisor of A.
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Hence, by Lemma 2.4, A(p-q)+ is prime. But A(p-q)+ = A(p, q)+ and
D is a nonzero ideal of A(p, q)+ which squares to zero, a contradiction.

The converse and the simple case are easy.

Notice that if there are elements a, (3 in the center Z(A) of A such
that ap + (3q is not a zero divisor, then

R(p, q) ~ {x EA: (ap + (3q)x(ap + (3q) = O} = O.

Hence we get the next Corollary with covers [7; Theorem 3.1] and [1;
Corollary 1.5 and Theorem 1.9]:

COROLLARY 2.6. Let A be an associative algebra and let p, q be
any fixed elements in A witb p f:: q. Assume tbat tbere is an element
in Z(A)p + Z(A)q wbicb is not a zero divisor. Tben A(p, q) is prime
or simple if and only if so is A.

If A is an associative algebra and r its centroid (see [5; Chapter X]),
then it is clear that r is contained in the centroid r p,q of A(p, q) for
any p, q of A. Now, if A is simple we have that A 0r K is simple for
any field extension K of F. Assume that R(p, q) = 0 and p f:: q. Since
this condition does not depend on the ground field, Theorem 2.5 tells
us that A(p, q) ®r K = (A 0r K)(p 01, q 0 1) is simple for any field
extension K of f, so r is the centroid of A(p, q) too. Hence for p f:: q
we get that A(p, q) is central simple if and only if A is central simple
and R(p, q) = O.

For prime algebras we also get the coincidence of the centroids:

THEOREM 2.7. Let A be a prime associative algebra and let p, q be
elements in A witb p f:: q and R(p, q) = O. Tben tbe centroids of A
and A(p, q) coincide.

Proof. Let r be the centroid of A and fp,q the centroid of A(p,q),
so r ~ fp,g. Let / E fp,g, we will write x"f for the image of the
element x under /. Let us consider the subspace H spanned by the set
{(xyp -xy"f : x, yEA}. For x, y, z in A, z*«xyP -xy"f) = H(XYP
z*(xy"f) = (H(XY))"I-Z*(xy"f) = (zpxyp-(xyqz)"f-zpxy"f+xy"fqz.

But z * y"f = (z * y)"l, so zpy"l - y"lqz = (zpyP - (yqzp. Hence
z * «xyp - xy"f) = (zpxyp - (xyqz)"l - zpxy"f + xzpy"f - x(zpy)"t +
x( yqz)"f = [( (zpx)y)"l - (zpx)y "f] - [(x(yqz)P- x(yqz)"l] + [( x( zpy))"f -
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x(zpy)"Y] - [«xzp)y)"Y - (xzp)y'Y] which is in H. Therefore A *H ~ H
and, in the same way, we obtain H * A ~ H. Thus H is an ideal of
A(p,q).

Let us assume that H =1= o. By Proposition 2.3 there is a nonzero
ideal D of A such that D ~ H. Let us consider the set S = {x EA:
(x(p - q)z)'Y = x(p - q)z'Y and (z(p - q)x)'Y = z'Y(p - q)x Vz EA}.

Notice that for x, y and z in A, (x *z) *y - x *(z *y) + (yqx) *z + z *
(xpy) = z(p-q)(xpy+yqx), and since «x*z)*y-x*(z*y)+(yqx)*
z + z * (xpy»'Y = (x * z'Y) * Y - x * (z'Y * y) + (yqx) * z'Y + z'Y * (xpy),
we get (z(P - q)(xpy + yqx»)'"1 = z'Y(p - q)(xpy + yqx). Symmetrically
«xpy+yqx)(p-q)z)"Y = (xpy+yqx)(p-q)z'Y. Therefore xpy+yqx E S
for all x, y in A.

If p + q =1= 0, Lemma 2.1,1) gives us an ideal I of A contained in
S. If, on the contrary, p + q = 0, then S = {x EA: (xpz)'"1 = xpz'Y
and (zpx)'Y = z'Ypx Vz E A}, so S is easily seen to be a subalgebra
of the homotope algebra A(p) = A(P,O), and since xpy - ypx E 5 for
all x, y in A, we get that 5 is also an ideal of A(p)- which contains
[A(P) , A(p)]. Since A(P) = A(p, 0) is prime (Theorem 2.5), [4; Theorem
3J shows that either 5 is contained in the center of A(p) or 5 contains a
nonzero ideal of A(p). In the first case [4; Lemma 1Jshows that A(p) is
commutative, so A(p,q) = A(2p)+ = A(2p) = A(2p, 0) and we are back
in the case p + q =1= O. If 5 contains a nonzero ideal of A(P) = A(p, 0),
then, by Proposition 2.3, 5 contains a nonzero ideal of A.

The conclusion of the last paragraph is that there is always a nonzero
ideal Iof A such that for any x E I and z E A, (x(p-q)z)"Y = x(p-q)z'Y
and (z(p - q)x)"Y = z'Y(p - q)x. Now, for x, y in A and u in I we have
(xu(p - q)y)'Y = «xu)(p - q)y)'Y = xu(p - q)y'Y = x(u(P - q)y)'"1, so
(xy)'Y = xy'Y for any x E A and yE I(p - q)A. Since A is prime, A(p
q)I(P - q)A =1= 0. Let us take a nonzero element u E (p - q)I(p - q)A.
Then for x, yEA:

(xyu)'Y = (xy)'Yu since u E (p - q)I and I ~ 5,

(xyu)'Y = x(yu)'Y since yu E I(p - q)A,

(yu)'Y = y'Yu since u E (p - q)I and I ~ 5

Hence «xy)'Y - xy'Y)u = (xyu)'Y - x(yu)'Y = (xyu)'Y - (xyu)'Y = 0.
In consequence Hu = 0, so Du =°= D(AuA) and, since A is prime,
we arrive at u = 0, a contradiction.
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Therefore H = 0 and (xy)"Y = xy"Y for any x, y in A. Similarly we
prove that (xy)"Y = x"Y y for any x,y in A, s0'"Y is in the centroid of A.

3. Mutations of simple artinian associative algebras

We will show in this section that a mutation A(p, q) of a simple ar
tinian associative algebra A, with p i- q, contains a maximal nilpotent
ideal R and a simple subalgebra S such that A(p, q) = R El) S. The
subalgebra S has a quite definite form. In case p = q, A(p, q) is a Lie
algebra which contains a maximal solvable ideal. The quotient modulo
this ideal verifies that its derived algebra is simple.

We begin with a characterization of the ideal R(p,q) = {x EA:
pxp = pxq = qxp = qxq = O}, which will turn out to be the largest
nilpotent ideal of A(p, q) in case p i- q.

LEMMA 3.1. Let A be a semisimple artinian associative algebra and
letp,q beanyelementsofA. ThenR(p,q) = (r(p)nr(q))+(1(p)n1(q)).

Proof. Since any right or left ideal of A is generated by an idem
potent [2], we get Ap + Aq = Ae and pA + qA = fA, with e2 = e
and f2 = f. Now, for x E R(p, q) we have exf = 0 so xf E r( e) =
r(p) n r(q), x - xf E 1(1) = 1(p) n 1(q) and x = xf + (x - xI) E
(r(p) n r(q)) + (l(p) n 1(q)). That (r(p) n r(q)) + (l(p) n 1(q)) <;;; R(p, q)
is obvious.

THEOREM 3.2. Let A be a simple artinian associative algebra and
let p, q be any fixed elements of A with p i- q. Then A(p, q) *A(p, q) =
A(p, q), R(p, q) is the only maximal ideal of A(p, q), R(p, q) is nilpo
tent and there is a simple subalgebra S of A(p, q) such that A(p, q) =
R(p, q) El) S.

Proof. As in Lemma 2.1,1), changing q by -q, we get that the sub
space spanned by {xpy - yqx : x, YEA} contains a proper ideal
of A, so for A simple this subspace is the whole A. This proves
that A(p, q) * A(p, q) = A(p, q). It is straightforward to see that
R(p,q) * (R(p,q) *R(p, q)) = 0 = (R(p,q)*R(p,q))*R(p,q), so R(p,q)
is a nilpotent ideal of A(p, q). In particular R(p, q) i- A(p, q). Proposi
tion 2.3 and the simplicity of A prove that R(p, q) is the only maximal
ideal of A(p, q).
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Finally, let Ap+Aq = Ae andpA+qA = fA, with e2 = e and f2 = f.
Then R(p, q) = (r(p) n r(q» + (l(p) n l(q» = r(e) + 1(J) = (1 - e)A +
A(l- f). Therefore A = eA+(l-e)A = e(Af+A(l- f)+(l-e)A ~

eAf+(l-e)A+A(l-J) = eAf+R(p,q). Moreover,ifx E eAfnR(p,q),
then x E R(p,q) = r(e) + 1(J), so x = Xl + X2, with eXI = 0 = x2f.
But x E eAf so x = exf = exd + ex2/ = o. Thus eAf n R(p, q) = 0

.and A(p,q) = R(p,q)EDeAf. Since (eAf)A(eAf) <; eAf, eA! is closed
under the product in A(p, q). Hence S = eAf is a subalgebra of A(p, q)
which is simple since so is A(p, q)/R(p, q).

Let us determine more closely what the simple subalgebras that
appear in the last Theorem are like. Since A is a simple artinian
associative algebra, there is a division algebra D and an integer n
such that A is isomorphic to the algebra of matrices Mn(D) ([2]). We
shall identify then A with the algebra EndD(V) of endomorphisms of
a vector space V of dimension n over D (we will consider the action of
D on V on the right).

Let p, q be elements of A with p ::f:. q. IT rep) n r(q) = l(p) n l(q) = 0,
then A(p, q) is simple and we are done. Otherwise, let {VI,·· . ,vn } be
a basis of V over D such that {vr +1 , • .. ,vn } is a basis of ker p n ker q.
Then p and q are represented by matrices

(

PH
P2l

p= .

Pnl

Plr 0
P2r 0

o
Pnr 0

and r(p)nr(q) = {x E EndD(V): xCV) <; ker pnker q}, so r(p)nr(q)
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consists of the endomorphisms represented by matrices of the form

o

o

an,l

o .

o

Now, the set l(p) n l(q) consists of those matrices x such that each
row (al,'" ,an) verifies:

Cl
Plr qll ql' )P21 P2r q21 q2r

(al,'" ,an) : . = 0

pnl pnr qnl qnr

We can solve this system and get a set of indices L = {i l ,· .. ,is},
such that any solution is given by

ail = Lajd{
jrt L

0'. = '" 0' ·dj
I, LJ) s

jrt L

Let B be the set of n x n matrices over D with O's in the last n - r
rows and in the columns with indices not in L. Then it is easy to see
that A(p, q) = R(p, q) El) Band B is a subalgebra of A(p, q), which is
simple by the last Theorem.

But for x, y E B, when performing the product x*y = (xp)y -(yq)x,
only the rows with indices in L of p and q are relevant. Therefore, if we
denote by p the s x r matrix over D formed by the intersection of the
first r columns and the rows with indices in L of p, and the same for q,
we get that the subalgebra B is isomorphic to the algebra Mrxs(D),
of r x s matrices over D, with multiplication given by

x * y = xjJy - yqx
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where p, q E Msxr(D).
Moreover p and q are s¥ch that p '1= q, there is no matrix in Mrxs(D)

with px = ijx = 0 and there is no matrix in MrxsCD) with xp = xij = O.
The last two conditions are equivalent to {x E Dr : pxt = ijxt = O} =
o = {x E DB : xp = xq = O}, where xt denotes the transpose of x.
All this can be seen directly from the construction of p and q or by
appealing to B being a simple algebra. The algebra Mrxs(D) with the
product x * y = xpy - yijx will be denoted Dr,s(p, q).

Conversely, let us assume that u, v E Msxr(D), u '1= v and {x E Dr :
uxt = vxt = O} = 0 = {x E DS : xu = xv = O}. If n ~ max{r,s} and
we take A = Mn(D),

p=(~ ~) q=(~ ~),
then it can be checked that rep) n r(q) consists of those matrices in
Mn(D) with the first r rows equal to zero, and l(p) n l(q) consists
of those matrices in Mn(D) with the first s columns equal to zero.
Moreover, A(p,q)jR(p,q) is isomorphic to Dr,s(u,v).

Summarizing we get:

THEOREM 3.3. Let A be a simple artinian associative algebra, A ~

Mn(D) for some division algebra D, and let p,q be elements of A
with p '1= q. Then there is a simple subalgebra S of A(p, q) such that
A(p,q) = R(p, q)$S and S is isomorphic to Dr,s(u, v) for some r, s ~ n
and u, v E Msxr(D) such that u '1= v and {x E Dr : ux t = vx t = O} =
0= {x E DS : xu = xv = O}. Conversely, any such algebra Dr,s(u,v)
is simple and isomorphic to A(p, q)jR(p, q) for some simple artinian
associative algebra and elements p, q E A with p '1= q.

In case p and q are linearly dependent we get r = s so A(p, q)jR(p, q)
is again a mutation algebra. But for p and q linearly independent it
may well happen that r '1= s as the following example shows:

EXAMPLE 3.4. Let us take A = M2(F),p = (:: ~), q = (:: ~),
with (PI ,P2) and (ql, q2) linearly independent in F2. Then rep)nr(q) =

{(~ ~) :a,,BEF}andl(p)nl(q)=O. SoR(p,q)=r(p)nr(q) and

A(p,q)jR(p,q) ~ H,2 ((:~) ,(:~)) .
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This is a simple algebra of dimension 2. If it were isomorphic to a
mutation algebra C(a, b), then C would be a simple associative algebra
of dimension 2, so C would be a quadratic field extension of F and

C(a, b) would be commutative. However, in F1 ,2 ( (:~) , (:~) ),

(1,0) * (0,1) = -(q2,pI) i= (P2, -qI) = (0,1) * (1,0).

It remains to study the case in which p = q. Of course, if p = q = 0,
then A(p, q) * A(p, q) = °and there is nothing to do. In other case
A(p,p) = A(p)- and R(p,p) = {x EA: pxp = O}, which will be
denoted by R(p). From Theorem 3.3 we know that there is a subal
gebra S of A(p) = A(p, 0) such that A(p) = R(p) Efl S. Moreover, the
subalgebra 5 with the product in A(p) is isomorphic to Dr,s(p, 0) with
{x E D r

: pxt = O} = 0 = {x E DS : xp = O}. This implies that
r = s and that p is invertible in Mr(D). Hence Dr,s(p, 0) = M r ( D)(p),
which is isomorphic to Mr(D). So we get:

THEOREM 3.5. Let A be a simple axtinian associative algebra, A ~

Mn(D) for some division algebra D, and let p be a nonzero element
of A. Then there is a simple su balgebra S of A(p) with A(p, p) =
R(p) EB S, R(p) is a nilpotent ideal of A(p, p) and S, with the product
in A(p,p) = A(p)-, is isomorphic to Mr(D)- for some r ~ n.

From [3; Chapter 1] we know that any ideal of Mr(D)- either is con
tained in the center Z(Mr(D)) = ZeD)! (I is the identity matrix), or
contains the derived subalgebra [Mr(D), Mr(D)). Moreover, if Mr(D)
is not commutative, that is, if D is not a field or r > 1, then

[Alr (D), Mr(D)JI(Z(Mr(D)) n [Mr(D), Mr(D)]) ~

([Alr(D), Air(D)] + Z(Mr(D)))jZ(Mr(D))

is a simple Lie algebra. Hence:

THEOREM 3.6. Let A be a simple axtinian associative algebra and
let p be a nonzero element of A. Then the ideal J(p) ofA(p, p), given by
J(p)jR(p) = Z(A(p,p)jR(p)) (or, equivalently, J(p) = R(p) EB Z(S))
is the laxgest solvable ideal of A(p,p). If J(p) i= A(p,p), then the quo
tient B(p) = A.(p,p)j J(p) is a semisimple Lie algebra with [B(p), B(p))
simple.
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EXAMPLE 3.7. Let A = M 2 (F) and p = (~ ~). Then R(p) =

{x EA: pxp = O} = {(~ ~): a,p, '"'I E F}. Hence A(p,p)1R(p) is

a Lie algebra of dimension 1, so J(p) = A(p,p). Therefore, A(p,p) is

solvable, but it is not nilpotent since (~ ~) * (~ ~) = (~ ~).
This shows that J(p) needs not be nilpotent.

In general there is no subalgebra T of A(p, p) with A(p, p) = J (p )EBT.
Think, for example, of A = Mn(F) for n a prime number and F a field
of characteristic n. Then if p is the identity matrix, then A(p,p) = A-,
J(p) = FI ~ [A, A] and J(p) is not complemented by any subalgebra
of A-. However, if D is a finite dimensional division algebra over a field
of characteristic 0, then it is well known that Mr(D) = Z(Mr(D» EB
[Mr(D), Mr(D)], and [Mr(D), Mr(D)] is a simple Lie algebra of type
A (See [5]). Then:

COROLLARY 3.7. Let A be a finite dimensional simple associative
algebra over a field of characteristic 0 and p a nonzero element of A.
Then if J(p) f= A(p,p), there is a simple subalgebra T of A(p,p) with
A(p,p) = J(p) $ T.

4. The solvable radical of a mutation algebra

Let A be an artinian associative algebra and let p, q be elements of
A. Then the Jacobson radical R(A) of A is a nilpotent ideal of A, so it
is a nilpotent ideal of A(p, q) too. Moreover AIR(A) = Al EB ... EB An,
with the Ai'S simple algebras.

Thenp+R(A) =PI + .. '+Pn and q+R(A) = ql + .. '+qn, with Pi,
qi in Ai, i = 1, ... , n, and A(p, q)/R(A) = Al(Pl, ql)$' .. EBAn(Pn, qn).

We have seen in the last section that each Ai (Pi, qi) has a largest
solvable ideal J(Pi, qi), which is R(Pi, qi) if Pi f= qi (Theorem 3.2),
or J(Pi) if Pi = qi (Theorem 3.6). Then the ideal J(p, q) given by
J(p,q)IR(A) = J(Pl,Qt} EB··· E9 J(Pn,qn) is the largest solvable ideal
of A(p, q) and will be called the solvable radical of A(p, q). With the
results of the last section we have:

THEOREM 4.1. Let A be an artinian associative algebra and let P, q
be elements of A. Then A(p, q) has a largest solvable ideal J(p, q) and
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tbe quotient A(p, q)j J(p, q) is a direct sum of ideals, each one being iso
morpbic eitber to a simple algebra Dr,s(U, v), for positive integers r, s,
division algebra D and U #- v (as in Tbeorem 3.3), or to a semisimple
Lie algebra of tbe form Mr(D)- jZ(Mr(D)), for some positive integer
r and division algebra D.

COROLLARY 4.2. Let A be an artinian associative algebra and let
p, q be any fixed elements of A.. Tben J(p, q) = 0 if and only if A is
semisimple, l(p) n l(q) = 0 = rep) n r(q) and tbere is no maximal ideal
M of A witb p - q EM.

Notice that for artinian associative or alternative algebras and for
finite dimensional Lie or Malcev algebras over fields of characteristic
0, the solvable radical equals the intersection of the maximal ideals of
A which do not contain A2 (see the proof of Theorem 4.5). Hence

COROLLARY 4.3. Let A be an artinian associative algebra and let
p, q be any fixed elements of .4. Tben J(p, q) = R(A) if and only if
tbere is no maximal ideal M of A not containing A2 such tbat p-q E M
and tbe sets {x EA: px,qx E R(A)} and {x EA: xp,xq E R(A)} are
contained in R( A).

COROLLARY 4.4. Let A be an artinian associative algebra and let
p, q be any fixed elements of A. If A(p, q) bas a unit element tben
J(p,q) = R(A).

Proof. If A(p,q) has a unit element, thenp-q is invertible (see [1]),
so Corollary 4.3 applies.

Finally we shall give some sufficient conditions for the radical J(p, q)
to be nilpotent. Example 3.7 shows that this is not always the case.

THEOREM 4.5. Let A be an artinian associative algebra and let p, q
be any fixed elements of A. If p - q rt M for any maximal ideal M of
A not containing A 2, tben J(p,q) is nilpotent.

Proof. We know that R(A) ~ J(p, q). On the other hand R(A)
is contained in any maximal ideal M of A not containing A2 for, in
other case, A = R(A) + A1 and .42 ~ R(A)2 + M. But A2 1: M, so
M c R( A)2 +M and A = R( A)2 +M. This implies, in the same way,
that A = R(A)4 + M and, eventually, we shall arrive to A = M, since
R(A) is nilpotent.
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Now A/R(A) = A1EB" 'EBAn, with the Ai'S simpleideals,p+R(A) =
PI +.. '+Pn, q+R(A) =ql +.. '+qn, withpi,qi E Ai, i = 1, ... ,no Our
conditions imply that Pi =1= qi for all i, so J(p, q)/R(A) = R(pl, qI) EB
... EB R(Pn, qn) from the remarks preceding Theorem 4.1. Hence for
any x E J(p, q) we have that pxp, pxq, qxp and qxq are all in R(A)
(actually J(p,q) = {x EA: pxp,pxq,qxp,qxq E R(A)}). Any element

in J(p,q) * J(p,q) * (2~.~1) * J(p,q) (with any order of parenthesis) is
a sum of elements of the form x = XIUIXZU2X3U3'" U2mX2m+1, with
Xi E J(p,q), i = 1, ... ,2m + 1,Ui = p or q, i = 1, ... ,2m. But x =
XI(UIX2 U2)X3 ••• X2m-1 (U2m-IX2mU2m)X2m+l, and each UiXi+1 Ui+l be
longs to R(A). Hence x E R(A)m, so if we take m large enough so that
R(A)m = 0, we get that any product of 2m + 1 elements of J(p, q) is
0, so J(p, q) is a nilpotent ideal of A(p, q).

We know that if we drop the condition of p - q not belonging to M
for any maximal ideal of A not containing A 2 , then J(p,q) may not be
nilpotent (Example 3.7).
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