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FINITELY BASED MODULAR LATTICE VARIETIES

YOUNG YUG KANG

1. Introduction

In K. Baker [1] it is shown that the variety M of all modular lattices
has 2xO subvarieties. It follows that there exists a vari~ty of modular
lattices that it is not finitely based. Here our investigation is concerned
with the question wether the join of two finitely based lattice varieties
is finitely based. The answer to question is not always affirmative.
It was first shown by K. Baker that the join of two finitely based
lattice varieties need not be finitely based. Here the original question
for modular lattice varieties is investigated under certain conditions.
Actually we obtain the following results.

THEOREM 1.1. Let V and V' be finitely based lattice varieties. If
Bk r/:. V and A 2 r/:. V', then V + V'is finitely based.

THEOREM 1.2. Let V and V' be finitely based lattice varieties. If
Al r/:. V and E r/:. V', then V +Viis finitely based.

The rest of this paper is divided into two sections. In Section 2 we
will give some preliminary definitions and facts. And finally in last
section we shall prove the theorem 1.1, 1.2 and state their corollaries.
For standard concepts and facts from lattice theory we refer the reader
to Gratzer [4]. However we use + and x instead of V and A for the
lattice operations.

2. Preliminaries

A class K of algebras is finitely based if it is the class of all models
of some finite set of identities.
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DEFINITION 2.1. A class K of first order L-structure is elementary
if there is a set I: of first order formulas such that .

A E K if and only if L holds in A.

And an elementary class K is strictly elementary if :E can be taken to
be finite.

Now we will review a well-known theorem in universal algebra, which
is very useful in this paper.

THEOREM 2.2. Let V and V' be varieties. Then the following are
equivalent.

(1) V +V'is finitely based.
(2) V + V' is strictly elementary.
(3) The complement of V +V'is closed under u1traproduct.
Here the complements can be taken relative to any finitely based

supervariety U.

In Jonsson [6] and [8], the following criterion for membership in the
join of two congruence distributive varieties is obtained.

THEOREM 2.3. Suppose U is a congruence distributive variety, and
let V and V' be subvarieties ofU defined, relative to U, by the identities
a = 13 and j =6, respectively. Then for an algebra A the following are
equivalent.

(1) A E V +V'
(2) A::::; B X B ' with B E V and B' E V'.
(3) f) n f)' = 0 A, the null congruence relation in A, where f), f)1 E

Con(A), the lattice of all congruences over A, are the smallest
congruence relations with A/e E V and A/f)' E V', respec­
tively.

(4) con(a(J.t), l3(p)rh con( j(v), f)( v)) = 0 for all !J, v E "'A.

This theorem applies in particular to lattice varieties. The closer
study of congruence relations on lattices is based Dilworth's concepts
of projectivity. Consider two quotients a/b and cid in a lattice L. Ifa+
b = c and ad = b, then we say that a/b trasposes up onto cjd and that
cjd trasposes down onto a/b (in symbols, a/b /" cid and c/d"\. a/b).
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If there exists a sequence of quotients ajb = aojbo, aI/b l ,··· ,anjbn =
cjd such that for i = 0,1,2"" , n - 1, ai/bi / ai+I/bi+l or ai/bi '\.
ai+I/bi+ l , then we say that ajb projects onto cjd in n steps. By
projective di3tance between two quotients ajb and cjd - in symbols
P(ajb, cjd) - we mean that the smallest nonnegative integer n such
that some nontrivial subquotients a' jb' of ajb and c' jd' of cjd are pro­
jective to each other in n steps. If no such n exists, then we write
P(ajb,cjd) = 00. We write Pd(ajb,cjd) = n if P(ajb,cjd) = n and
ajb is projective to cjd. For modular lattices, principal congruences
can be described in terms of projectivities. Therefore the criterion for
membership in V + V' in Theorem 2.3 can be expressed in terms of
this notion for modular lattice varieties.

COROLLARY 2.4. Suppose U is a modular lattice variety. Let V and
V' be subvarieties of U defined, relative to U, by the identities Cl' = 13
and I = 8 respectively, where the inclusions 13 ~ Cl' and 8 ~ I hold in
U. Then a lattice L E U belongs to V +V' if and only if two nontrivial
subquotients of Cl'(f.l) j 13(/1) and I( l/) j8( l/) with f.l, l/ E W L never project
onto each other.

By a 3trongly normal sequence of transposes in L we mean a (finite)
sequence of quotients

(1)

such that if for 0 ~ k ~ n, ak_I/bk - 1 / akjbk '\. ak+I/bk+l, ak =
ak-I +ak+1 and ak-Iak+1 < bk or if ak_I/bk- 1 '\. akjbk / ak+I/bk+l,
bk = bk- 1h+l and bk- 1 + bk+l > ak. Suppose (1) is a strongly normal
sequence of transposes in L. 'Ne see from Figure 1 that if a quotient
ak-I jbk- 1 is nontrivial, the figure contains a nontrivial diamond

where

if



130

and

if

Young Yug Kang

ak-dbk-l '\. ak/bk /' ak+l/bk+l.

By this argument, a strongly nonnal sequence of transposes (1) in L
generates a sequence of (n -1) diamonds Dl, D2,··· , D n-l. This said
to be the associated sequence of diamonds.

In Jonsson [6], it was proved that if two quotients in a modular lat­
tice L project onto each other in n steps, then there exist nontrivial
subquotients of them which project strongly normally onto each other
in :5 n steps. Therefore, with each sequence of projectivities there
is always an associated sequence of diamonds. We must now investi­
gate how these diamonds fit together. First, we define some notations.
Given two diamonds

We say that D 1 transposes down onto D 2 (in symbols D 1 '\.(1) D 2 ) or
that D 2 transposes up onto D1 (in symbols D 2 /'(1) D1 ) if Ut/VI '\.

u21v2, and under this transposition the vertices Xl> Yl> ZI are mapped
onto the corresponding vertices X2, Y2, Z2 (see Figure 3). Also, we say
that D 1 translates up onto D2 (in symbols D 1 /'(2) D2) and that D1

translates down onto D2 (in symbols D 1 "..(2) D 2 ) if utiZI /' X2/V2 and
if ZI/Vl ".. u21v2, respectively (see Figure 4). Note that D1 /'(2) D2

does not imply D2 '\.(2) D 1 • IT D = [V < X, y, Z < u] is a diamond,
then D* is defined to be the diamond [v < z,x,y < u]. So D1 "..(1) D2
means that Ul/Vl ".. u21v2, XIU2 = Z2, YIU2 = X2 and Z1U2 = Y2. The
investigation of how these associated diamonds fit together was done
by D. X. Hong [5]. That contains the following useful theorem. We
call it Hong's Theorem in this paper.

THEOREM 1.6 (HONG'S THEOREM). Let alb and cid be nontrivial
quotients in a modular lattice such that P(a/b, cid) = n, 2:5 n < 00.

Then some nontrivial subquotients a' /b' and c'ld' of alb and cid, re­
spectively, can be connected by a strongly normal sequence of trans­
poses
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such that the associated diamonds D1 , D2 ,' •• , Dn - l satisfy

(i) D" /(1) Dk+l or D" /(2) DHI if a":/b,, / aHI/bHI and
D" '\.(1) Dk+l or D" '\.(2) DHI if a"lb" '\. aHdbHI, k =
1,2, ... ,n - 2.

(ii) If D" /(1) Dk+l or D" '\.(1) Dk+l , then D" = Dk+l , k =
2"" ,n - 2.

(iii) If D" /(1) Dk+l or Dk '\.(1) Dk+l' then it can not happen
that DHI '\.(1) D k+2 or DHI /(1) D k+2 , respectively.

If the conditions (i), (ii) and (iii) are satisfied, then we refer to the
strongly normal sequence of transposes in Hong's Theorem as a Hong
sequence.

Finally, we introduce some lattices and notation used later. Let
AI, A 2 , and A 3 be the lattices pictured in Figure 5.

3. Proofs of main theorems

By a critical quotient of a lattice L we mean a quotient that is
collapsed by every nontrivial congruence relation on L.

LEMMA 3.1 (J6NSSON [8]). Let V and V' be subvarieties of M
defined, relative to M, by identities a = (3 and, = b, respectively,
where the inclusions (3 ::; a and b ::; "( hold in Af. In order for V + V'
to be finitely based relative to M, it is necessary and sufficient that
there exists a positive integer n with the following property:

P(n): For any L E M, if there exist p, v E W L such that a non­
trivial subquotient of a(p) I(3(p) projects onto a nontrivial subquo­
tient or "((v)Ib( v), then there exist p', v' E W L such that a nontrivial
subquotient of a(p/)1(3(p/) projects onto a nontrivial subquotient of
,(vl)lb(v' ) in n steps.

NOTATION. For any modular lattice L, if there exists a nonnegative
integer n such that, for all a, b, c, dEL with b < a and d < c, whenever
alb projects onto cid, then a nontrivial subquotient of alb projects
onto a nontrivial subquotient of cid in n steps, then the smallest such
n is denoted by R(L). If no such n exists, then we write R( L) = 00. For
a class K of lattices, R(K) denotes the supremum of R(L) for L E K.
Also, let x denote the image of each x E L in the homomorphic image
L of L, and we shall use this notion for any homomorphic images of a
given lattice.
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LEMMA 3.2. Let L be a homomorphic image of a lattice L, and let
p/q be a prime quotient in L with q < p. For all a, bEL with b < a
and for any nonnegative integer n, ifa/b projects onto p/q in n steps,
then a nontrivial subquotient of a/b projects onto p/q in (n + 1) steps
when n > 0, and in two steps n = O.

LEMMA 3.3. Suppose the quotients a/b and cid in a modular lat­
tice are connected by a Hong sequence of length n. If the associated
sequence of diamonds Di' i < n, does not contain a subsequence of the
form Dk-1 /'(2) Di; ".(2) Dk+1J 1 < k < n - 1, then it contains at
most one subsequence of the form Dk-1 ".(2) Dk /'(2) Dk+l.

Proof. The inclusion hold trivially if n S 4, so we assume that n > 4.
Consider four cases.

Case(i) : D1 /'(2) D2: by our assumption D2 ".(1) Dj, and hence
by Hong's Theorem, D3 /'(2) D4. By the same argument, D4 ".(1) Ds
and Ds /'(2) D6 • Continuing in the same manner, we see that the
condition DJ: ".(2) Dk+1J k < n - 1, never holds.

Case(ii) : D1 ".(2) D2: by Hong's Theorem, there are two subcases.
Subcase (iia ) : D2 /'(1) Dj : again using Hong's Theorem, we

infer that D 3 ".(2) D 4 • This reduces the problem to the corresponding
problem for a shorter sequence.

Subcase (iib) : D2 /'(2) D3: by Case(i), there is no index k > 1 with
D" ".(2) Dk+l.

Case(iii) : D1 /'(1) Di: by Hong's Theorem, we have D2 ".(2) D 3 •

The conclusion follows from Case(ii).
Case(iv) : D1 ".(1) Di: by Hong's Theorem, we have D2 /'(2) D 3 •

The conclusion follows from Case(i). The proof is complete.

Observation. If A and B are sublattices of a lattice L, and if a filter
F of A projects up onto an ideal I of B, then A U B is a sublattice of
L containing A as an ideal and B as a filter.

This trivial but extremely useful observation is the basic for the
classical Dilworth-Hall construction.

LEMMA 3.4. Given a sequence of Hong's associated diamonds D 1 ,

D2 ,'" ,D2J:-4 for k > 2 in a modular lattice L. If D1 /(2) D2 (or
D 1 ".(2) D 2 ), and if the numbers below the arrows alternate, then tbe
sublattice Lo of L generated by D1 , D2' ... ,DZJ:-4 is finite and has tbe
finite simple lattice Bi; pictured in Figure 6 as a homomorphic image.
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Proof. By our assumption, Du = D 2t+l *, 0 < 2t < 2k - 3. Thus
Dl , D2, D4,' .. ,D2k- 4 generates Lo. Trivially, Ul I Zl is a filter of the
sublattice D l of Land XdV2 is an ideal of the sublattice D2 of L. Also,
by assumption, utiZl / X2/V2' Hence by the Observation, D l U D2
is a sublattice of L. Also it is trivial that u21X2 is a filter of D l U D 2
and that x41v4 is an ideal of the sublattice D4 of L. By hypothesis,
D3 /(2) D4· Hence u31z3 / x41v4' Since D2 = D;, we have u2/x2 =
u31z3. Thus we have UdX2 / x41v4. Again, by the Observation,
D l U D2 U D4 is a sublattice of L. Continuing in this manner, we have
that D l U D 2 U D4 U ... U D2k-4 forms a sublattice Lo of L which is a
homomorphic image of the lattice Bk pictured in Figure 6. Therefore,
L o is finite and has the finite simple lattice Bk as a homomorphic
image. The proof is complete.

LEMMA 3.5. Let Bk be the simple lattice of length k pictured in
Figure 6. Then R(Bk ) = 2k - 1.

Proof. We use mathematical induction on k. Since R(M3 ) = 3, the
lemma is true for k = 2. Assume that it is true for k = t. Since the
other case can be treated similarly, we may assume that the relation
between the t-th diamond and (t + 1) - st diamond is as indicated in
Figure 7, namely that ut/Xt, Ut+I!Yt+l. Also, each prime subquotient
of ut/Vt projects onto Ut+l IYt+l in (2t +1) steps. Therefore the lemma
is true for k = t + 1. The proof is complete.

Proof of Theorem 1.1. Let V and V' be defined by the identities
0' = j3 and { = b, respectively, relative to the variety M of all modular
lattices. We may assume that the inclusion j3 ~ 0' and b ~ , hold in
every modular lattice.

In order to show that V + V'is finitely based it is sufficient, by
Theorem 2.2, to show that the complement K of V + V' in M is a
strictly elementary class. Consider any lattice L E M. Let (} and (}' be
the smallest conguence relations on L with LI(} E V and LIB' E V'.
Then by Theorem 2.3, L E K if and only if B n B' =1= OL, the null
congruence relation on L. In other words, L E K if and only if some
nontrivial quotient in L is collapsed by both B and B'. In J6nsson
[8], ideas from Baker used to express this property as a disjunction
of infinitely many elementary properties. Since we are concerned here
with modular lattice varieties, it is convenient notion of Pd(alb, cid).
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The condition referred to can be expressed as follows.
Pn(L) : There are nontrivial quotients a/b and cid in L such that

(i) a/b:::; 0:(11-)/13(,,) for some J.1. E ""L
(ii) c/d:::; ,(11)/6(11) for some 11 E ""L

(iii) Pd(a/b,c/d) = n.

By Corollary 2.4, for any L E M, L E K if and only if Pn(L) holds
for some natural number n. In other words K is defined, relative to
M, by the disjunction of infinitely many fomulas Pn(L). We claim
that if Pn(L) holds for some n 2: 4k + 3, then Pn(L) holds for some
m < 4k+3. Suppose Pn ( L) holds in L for some n ~ 4k+3. Then by the
definition of Pd(a/b,c/d) = n, there exists a Hong's sequence a' tb' =
ao/bo,al/b},··. ,an/bn = c' Id' for some nontrivial subquotients a'tb'
and c'/d' of a/b and cid, respectively. Also by Hong's Theorem, there
exists the associated sequence of diamonds DJ, D 2 , ••• ,Dn - l • Then
we have the following two cases.

(1) there exists a subsequence Di,DHJ,DH2 with 1 :::; i ~ n - 2
such that Di /'(2) Di+l "..(2) Di+2'

(2) There exists no such subsequence.

Case(1) : Let q be the smallest positive integer with 1 ~ q < n - 2
such that a subsequence D q,Dq+l,Dq+2 satisfies D q /'(2) Dq+l '\.(2)

D q+2 • We have the following two subcases.

(1.1 )

(1.2)

q < 4k - 5

4k - 5 ~ q

Case(1.1) : By the construction of the diamonds, we have Vq+l =
v q+2 + v q and Z qX q+2 = (uqZ q+t}(Xq+IUq+2) = UqUq+2' Hence D q U
Dq+I U D q+2 U {UqUq+2' UqVq+2' vq+2Uq, VqVq+2} forms a sublattice L o
of L which is a homomorphic image of the lattice C pictured in Figure
8. Therefore Lo contains the lattice A2 pictured in Figure 5 as a
homomorphic image. Also, aq/bq is a prime quotient in Lo. Since A2

is a simple lattice, o'q/bq is a critical quotient in A2 • Since A2 f/. V',
,(11') > 8(11') for some 11' E W Lo. Observe that ,(11') = ,(11') and
8(11') = 6(11'). Since R(A2) ~ 6, ,(11')/8(11') projects onto o'q/bq in 6
steps. Since aq/bq is a prime quotient in Lo, by Lemma 3.2, a prime
subquotient of ,(11')/8(11') projects onto aq/bq in 7 steps. Thus a/b
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projects onto a prime subquotient of ,(v')/6(1/') in (q + 7) steps. Since
q < 4k - 5, q + 7 < 4k + 2. Thus Pm(L) holds for some m < 4k + 3.

Case(1.2) : By Lemma 3.3, there is at most one subsequence D t ,

D t+1 , D t+2 with 0 < t :s: q - 1 such that D t '\.(2) D t+1 /(2) Dt+2. We
have the following two subcases.

(1.2.1) there exists such a subsequence for q - 2k + 4 < t :s: q - 1.
(1.2.2) there exists no such subsequences.

Take p = t - 2k + 5 if (1.2.1) holds, but p = q - 2k + 5 if (1.2.2) holds.
By the assumptions of Case(l), Case(1.2), Case(1.2.1) and Case(1.2.2),
for any i, with p < i < p + 2k - 4, neither D i /(2) D i +I '\.(2) D i+2 nor
D i '\.(2) Di+l /(2) Di+2. Therefore, the subsequence D p, D p+1 ,'" ,

D p+2k-5 satisfies the condition that the numbers below arrows alter­
nate and D p /(2) Dp+ I or D p '\.(2) D p+ I . Let L I be the sublattice of
L generated by Dp,Dp+ I ,'" ,Dp+2- 5 ' Then by Lemma 3.4, we have
a simple quotient lattice LI of L 1 which is isomorphic to the lattice
B k pictured in Figure 6. Hence by Lemma 3.5, R(Ld = 2k - 2. Also,
ap+2k-5/bp+2k-5 is a prime quotient in L 1 . Since L1 is a simple lat­
tice, CLp+2k-5/bp+2k-5 is a critical quotient in LI . S:nce LI S:! Bk t/:. V,
o:(p') > (3(11-') for some ,/ E w LI . Since R(Ld = 2k - 2, 0:(11-')/(3(p')
projects onto CLp+2k-5/bp+2k-5 in (2k-2) steps. Since ap+2k-5/bp+2k-5
is a prime quotient in L 1 , by Lemma 3.2, a prime subquotient of
o:(p')/(3(p') projects onto ap+2k-5/ bp+2k - 5 in (2k - 1) steps. Also
by the argument of Case (1.1), a prime subquotient of ,(1/')/6(1/') for
some v' E W Lo projects onto aq / bq in 7 steps. Since p = t - 2k + 5 or
q - 2k + 5, a prime subquotient of Q(p')/(3(fJ-') projects onto a prime
subquotient of ,(1/')/6(1/') in (4k+2) steps. Thus Pm(L) holds in some
m < 4k + 3.

Case(2) : Take p = n - 2k + 3. By the argument of Case (1.2.2),
Pm(L) holds in some m < 2k + 3.

By the above argument, we have already seen that for any L E M, if
Pn(L) holds for some n 2 4k+3, then Pm(L) holds for m < 4k+3. Thus
K is defined by the disjunction of the formulas Pn ( L) with n :s: 4k + 2,
relative to M. Therefore 1'+1" is fini tely based. The proof is complete.

COROLLARY 3.6. Let V and V' be finitely based modular lattice
varieties. If B k t/:. V and A 3 t/:. V', then V + V' is finitely based.

LEMMA 3.7. A modular lattice L generated by four diamonds D l ,
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D2' D3, D4 with the property that D I /(2) D2 "\.(2) D3 /(2) D 4 is a
homomorphic image of the lattice E pictured in Figure 9. Furthermore,
L has the finite simple lattice E pictured in Figure 10 as a homomorphic
lmage.

Proof. It is enough to show that VI +V4 = Z2 + X4 and UI U4 = ZI X3'

Examining the sublattice of L generated by Db D2 and D3 , we have
that VI + Z3 = Z2 and VIU3 + Z3 = U3. (See Figure 8). By D3 /(2) D 4 ,

we have U3 + V4 = X4. Therefore Z2 + X4 + VI + Z3 + U3 + V4 =
VI + Z3 + VIU3 + Z3 + V4' Since Z3 ~ V4 and VIU3 ~ VI, we have
Z2 + X4 = VI + V4' Dually, we have UIU4 = ZIX3.

The Proof of Theorem 1.2. Let V and V' be defined be the identities
et = fJ and ~ = 8, respectively, relative to the variety M. We may
assume that the inclusion fJ ~ a and 8 $ ~ hold in every modular
lattice.

In order to show that V + V' is finitely based it is sufficient, by
Theorem 2.2, to show that the complement K of V + V' in M is a
strictly elementary class. Consider any lattice L E M. Let 8 and (J' be
the smallest congruence relations on L with L / (J E V and L / (J' E V'.
Then by Theorem 2.3, L E K if and only if (J n (J' t= OL, the null
congruence relation on L. In other words, L E K if and only if some
nontrivial quotient in L is collapsed by both (J and (J'. The condition
referred to can be expressed as follows.

Pn(L) : There are nontrivial quotients a/b and cid in L such that

(i) a/b $ a(J1.)/fJ(J1.) for some J1. E wL
(ii) cid $ ~(v)/8(v) for some v E W L

(iii) Pd(a/b,cjd) = n.

By Collary 2.4, for any L E M, L E K if and only if Pn(L) holds
for some natural number n. In other words, K is defined, relative to
M, by the disjunction of infinitely many formulas Pn(L). We claim
that if Pn(L) holds for some n ~ 19, then Pm(L) holds for some
m $ 18. Suppose Pn(L) holds in L for some n ~ 19. Then by the
definition of Pd(ajb, c/d) = n, there exists a Hong's sequence a' jb' =
aojbo,aI/bI,". ,anjbn = c'/d' for some nontrivial subquotients a'/b'
of ajb and d jd' of cid, respectively. Also by Hong's Theorem, there
exists the associated sequence of diamonds Db D 2 ,··· ,Dn - I • Then
we have the following two cases
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(1) there exists a subsequence Dk, Dk+l, Dk+3, DkH, Dk+5 with 1 S;
k S; n - 3 such that the sequence of numbers below the arrows is
(2,1,2,2,2)

(2) there exists no such subsequences with 1 ::; k ::; n - 3.
Case(l) : By the construction of diamonds, DkUDk+l UDk+3 fonus

a sublattice L o of which contains .1 1 as a homomorphic image, and
ak+2/bk+2 is a prime quotient in Lo. Since Al rf:. V, f3(j.L') < o:(p,')
for some j.L' E WLo. Since R(Ad ::; 7, 0:(j.L')/f3(j.L') projects onto
ak+2/bk+2 in 7 steps. Therefore, by Lemma 3.2, a prime subquotient of
0:(j.L')/f3(j.L') projects onto ak+2/bk+2 in 8 steps. Also, by Lemma 3.7,
the lattice E is a homomorphic image of the sublattice L 1 of L gener­
ated by Dk+2, Dk+3, DkH' Dk+5. Furthenuore, ak+2/h+2 is a prime
quotient in L1 and Gk+2/h+2 is a critical quotient in E. Since E rf:. V',
8(v') < ,(v') for some v' E W L 1 . Also, R(E) = 8. Hence ,(v l )/8(v')
projects onto ak+2/bk+2 in 8 steps. Since ak+2/bk+2 is a prime quo­
tient in L 1, by Lemma 3.2, a prime sllhquotient of ,(Vi )/8(v') projects
onto ak+2/bk+2 in 9 steps. Thus a prime subquotient of 0:(//)/ f3(j.LI)
projects onto a prime suhquotient of ,(vl)/{;(Vl ) in 17 steps. Therefore
Pm(L) holds for some m < 18.

Case(2) : By Hong's Theorem, we have two subcases.

(2.1) there exists a subsequence Dk,Dk+l,Dk+2 with k = 1 or 2
such that the sequence of numbers below the arrows is (2,2,2)

(2.2) there exists a subsequence D k ,Dk+l,Dk+2 with n - 5::; k ::;
n - 3 such that the sequence of numbers below the arrows is
(2,1,2).

Case(2.1) : By the argument of Case(l), a prime subquotient of
,(v')/8(vl

) projects onto ak/bk in 9 steps. Thus a prime subquotient
of 0:(j.L)/ f3(p) projects onto a prime subquotient of ,(v')/8(v') in k + 9
steps. Since k ::; 2, then k+9 ::; 11. Therefore Pm(L) holds for m::; 11.

Case(2.2) : By the argument of Case( 1), a prime subquotient of
O:(j.L')/ f3(j.LI) projects onto ak+2/bk+2 in 9 steps. Thus a prime subquo­
tient of o:(p')/f3(p') projects onto a prime subquotient of ,(I/)/8(v) in
n - (k +2) +9 steps. Since n - 5 ~ k ~ n - 3, then 10 S; TI - k+7 S; 12.
Therefore Pm(L) holds for m ::s: 12. The proof is complete.
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