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ON THE BOUNDARY BEHAVIOR AND TAYLOR

COEFFICIENTS FOR MIXED NORM SPACES DP,q

YONG CHAN KIM AND ERN GUN KWON

1. Introduction

Let U = {z : Izl < I} and T = [-1r,1r]. For 0 < p < 00, and
1 ~ q ~ 00, the spaces Hq and DP,q are defined to consist of those f
holomorphic in U, respectively for which

IIfllq := sup Mq(r, J) < 00
O~r<l

and

where

By the theorem of Hardy and Littlewood (Theorem 5.11 in [2]), if
0< p < q.

For 0 < s, t ~ 00, l(s, t) denotes the space of those sequences
{ad~o for which

{( L lakI8)1/8}:=o E It (s < 00)
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and
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where Im = {k : 2m ~ k < 2m +1
} (m = 1,2,···) and 10 = {O} (See

[5]).
In [1], P. Ahern and M. Jevtic defined mixed norm spaces DP,q and

showed that when q = 2 these are exactly the spaces DP introduced by
F. Holland and B. Twomey [4]. They also investigated the dual space
and multipliers for DP,q.

This note is concerned with the tangential boundary behavior and
Taylor coefficient conditions of holomorphic functions in connection
with DP,q. We list some of the known properties of DP,q in the follow­
ing. Here and throughout this note ~ + ~, = 1 whenever 1 ~ q ~ 00.

PROPOSITION.

(1) Ifp < q, then HP C DP,q.
(2) Ifp> q, then HP ::) DP,q.
(3) If q ~ 2, then Hq ::) Dq,q.
(4) H2 ~ q < 00, then Hq C Dq,q.
(5) Ifpt ~ P2, then DP1,q ::) DP2,Q.
(6) If ql ~ Q2, then DP,ql c DP,q2.
(7) HI ~ q ~ 2 and if fez) = E~=l anZ

n E DP,q, then

{nl/q-l/Pan}~=lE l(q',p).

Proof. See [1. Theorem 6] for (1), (2), (3) and (4). If f E DP,q, then
Mq(r, /') ~ C(l - r )l/q-l/P-I. Hence the proof of (5) is complete. (6)
follows from the fact that

See [6. pA8(4')] for (7).

2. Representation and tangential boundary behavior

For 0 ~ r < 1, and (3 > 0, let us define

G~(t) = (1- reit)-p, t E T.
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THEOREM 1. Let 0 < p :s; 2 and 1 :s; q :s; 2 :s; s < 00. If f'(z) E
DP,q, then there is an F(t) E £S(T) such that

(2.0) fez) = 2~ i: F(t)G~(6 - t)dt

= (F * G~)(6), z = re's E U,

where (3 = lip -lis.

Proof. Let 0 < p :s; 2, 1 :s; q :s; 2 and let

00

j'(z) = L nanzn- 1 E DP,q.
n=l

Then j'(z) E DP,2 by (6) of Proposition. So

{n3/2-1/Pan}~=1 E 1(2,p) C l(q',p)

by (7) of Proposition. If we fix s; 2 ::; s < 00, then it follows from
Holder's inequality that

L Ik1-Pakl s ' :s; (L Ik~-taklql)~(L ~)l-~.
kEln kEln kEln

But since L ~ is bounded independently on n, we conclude that
kEln

(2.1)

where (3 = lip-lis. Next, set

bn = r((3)r(n + 1)an/r(n + (3) n = 1,2,. .. .

Then since r((3)r(n + l)/r(n + (3) = 0(n1
-

p) and p ~ 2, we obtain
from (2.1)

(2.2) {bn}~=l.E l(s',p) C l(s',2).



82

Finally let

(2.3)
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00

F(t) = L bneint, t E T.
n=l

Then it follows from (2.2),(2.3), and the Kellog's version of the Hausdorff­
Young theorem [5] that

(2.4)

On the other hand, termwise integration gives that

(2.5) z E U.

Here termwise integration is justified because F(t) E L S and the
series expansion of (1 - e-itz) -,8 is uniformly convergent whenever
z E U is fixed.

From (2.4) and (2.5) the proof is complete.

REMARK. If we suppose (2.0) for some F(t) E LS(T), then by
Young's inequality after differentiation of j(z) we get

(2.6) Mq(r,j") ~ CIIFIILsIIG~+2I1Lt,

where l/q = l/s + 1ft - 1. Since IIG~+2I1Lt = 0(1 - r)-2- f3+1/t ([2.
p.65]), by (2.6) we conclude that (2.0) implies

(2.7)

If we compare (2.7) with the definition of j' E DP,q we see that our
exponent f3 = l/p - 1/s is best possible.

THEOREM 2.

(1) If j'(z) E D1,q for some q, then j(z) E BMOA. (See [3] for
BMOA).

(2) If j'(z) E D1,q for some q : q ~ 2, tben j(z) is continuous in
{z: Izl ~ I}.

(3) If2/3 < p < 1, q ~ 2 and if j'(z) E DP,q, tben tbe limit of j(z)
as z -+ e iB witbin Q')' exists almost everywbere on T, wbere

Q')' = {reit
: 1 - r > Isin B2t I')'} and 'Y = 2(17~-1)'
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Proof. (1) Let j'(z) E D 1 ,=. Then M=(r,j') = 0(1 - r)-l from
the very definition of D 1,=. Hence

Thus (1-lz\)Ij'(z)1 2dxdy is a Carleson measure, whence f E BMOA.
([3. P.240)).

(2) Let j'(z) = L:~ nanzn E D1,2. Then {n1/ 2an} E 1(2,1) by (7)
of Proposition, so that

(2.8)

by Holder's inequality. From (2.8) and the Weierstrass M-test get) =
L:~ aneint converges uniformly and becomes a continuous function on
T. On the other hand, by Abel's theorem [9, p.229],

lim f(re it ) = get)
r--+l

for every t ET. Hence f (z) is the Poisson integral of the continuous
function get). Whence fez) is continuous on {z : Izl ~ I}.

(3) Let 2/3 < P < 1, q ~ 2, and j'(z) E Dp,q. Take, = 2(17~ 1)'

Then by Theorem 1,

fez) = (F * G~)(t), z = reit

for some F E L5, (3 = lip - 1/s. Now the existence of the Q-y-limit
follows from [8. Theorem A-(a)].

3. Taylor coefficients

THEOREM 3. Let fez) = L:~=o anzn be analytic in U. Suppose
that

(3.0)
N

L n21anl2 = O(Na:)
o
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for some 0' ~ O. Hq $ 2, then fez) E DP,q for all p with l/p >
l/q + 0'/2 - l.

Proof. If q $ 2,

(3.1) Mq(r,f') $ M2(r,f') = (2:n2IanI2r2n)1/2.

It follows from summation by parts that

00 00 n

(3.2) I: n21anl2r2n = I:(I: k2IakI2)(r2n - r2n+2)
n=O n=O k=O

The last term' of (3.2) is 0 by (3.0). Thus from (3.1) and (3.2)

00

Mq(r,J')P $ C(L nO (r2n - r2n+2))p/2 $ C(l _ r)-ap/2.
o

Hence 11

(1- r)P-p/qMq(r,!')Pdr < 00

for all p with p - plq - O'p/2 > -1.

COROLLARY. Let fez) = I:anzn be analytic in U. H (3.0) holds
for some 0'; 0 < 0' < 2, then f E H 2 •

REMARK. A routine calculation gives that (3.0) is equivalent to the
condition

(3.3) {nl-o/2an}~=1 E 1(2,00).

But by (7) of Proposition f( z) = I: anzn E DP,q, 1 ::; q ::; 2, should
satisfy

(3.4)

If we take an = n(o-3)/2 for n = 2m, m = 0,1,2, ... and an = 0
otherwise, then {an} satisfies (3.3) but not (3.4) when IIp = l/q +
0'12 - 1. Therefore the exponent p in the result of Theorem 3 is best
possible.
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THEOREM 4. If j(z) = L:~ anzn and if

{n1 /
q- 1/ Pa}oo E 1(1 p)

n n=1 "

then j E DP,q.

Proof.

(3.5) 11

(1 - ry-p/q Mq(r, J'ydr

< 11

(1 - ry-p/qMoo(r,J'Ydr

< 11

(1 - r y-P/q(L nlanlrn)pdr.

85

IT we apply [7. Theorem A] the last integral of (3.5) IS at most a
constant times

00

L( L k1/q-1/Plakl)P,
o kEfn

whence completes the proof.
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