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FINITE GROUP ACTIONS ON SPHERES

AND THE GOTTLIEB GROUP

JOHN OPREA

Introduction

The Gottlieb group (or evaluation subgroup) of a space was first
defined in [Gl] where its salient properties were described, including its
intimate connection with the Euler characteristic. Specifically, it was
shown that the nontriviality of the Gottlieb group of a finite polyhedron
suffices to ensure the vanishing of the Euler characteristic. Because an
aspherical space can be shown to have Gottlieb group equal to the
center of the fundamental group, it then follows that the nonvanishing
of the Euler characteristic of a finite aspherical polyhedron entails the
triviality of the center of the associated group.

Since Gottlieb's original work, some sporadic attempts have been
made to compute Gottlieb groups of various types of spaces. (The
importance of the Gottlieb group in fixed point theory, where it is a
special case of the Jiang subgroup, has been one motivating factor. See
[P].) One such attempt was made by Gottlieb's student G. Lang [L]
who, in particular, showed that the Gottlieb groups of the orbit spaces
of the action on S3 of the finite subgroups (e.g. binary polyhedral) of S3
by translation are the centers of these groups. This leads naturally to
the problem of determining G~ttlieb groups of orbit spaces of spheres
by general free actions. Because such an orbit space resembles an
aspherical space up to its dimension we are led to the statement of

THEOREM A. If H is a finite group which acts freely on an odd
sphere, then the Gottlieb group of the orbit space of the action is
equal to the center of H.

In order to prove Theorem A we will employ a lifting result due
to Gottlieb [G2] and generalized in [HV] and [H]. We give a straight­
forward obstruction-theoretic proof of this result which allows us to
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identify obstructions to lifting elements of the Gottlieb group up the
Postnikov tower. For the situation of Theorem A we use a group co­
homology argument to show that these obstructions vanish, allowing
each element of the center of H to be lifted.

Throughout this paper spaces will be connected and of the homo­
topy type of CW complexes. Hence weak equivalences are homotopy
equivalences and basepoints are nondegenerate. Also, we implicitly
assume that anytime we refer to a Postnikov tower or nth Postnikov
term for a space X, such objects actually exist. That is, X satisfies a
condition such as being simple, n-simple or nilpotent which guarantees
existence. We shall explicitly prove, however, that the orbit space of
a free finite group action on an odd sphere allows the formation of a
tower after the first stage.

1. Preliminaries on the Gottlieb group
In this section we recollect the definition and basic properties of the

Gottlieb group (see [GI]).

DEFINITION. The Cottlieb group of a space X, denoted C(X), con­
sists of all a E 11"1 (X) such that there is an a3sociated map A : SI x X -+

X and a homotopy cOIIUDutative diagram,

A
SI X X I X

i ~VIX
SI VX

PROPERTIES.

(1) G(X) = Im(ev# : 11"1 (XX , Ix) -+ 1I"1(X» where ev : XX -+ X
is evaluation at the basepoint.

(2) G(X) = The set of covering transformations of the universal
cover of X which are equivariantly homotopic to the iden­
tity (under the identification of covering transformations with
1I"1(X».

(3) Each element of G(X) acts trivially on alI1l"i(X), In particular,
G(X) is contained in the center of 11"1 (X).

(4) IT X = K(1I", 1), then C(X) = Z1I" (the center of 11").
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(5) If X is an H-space, then C(X) = 1r1(X).
(6) C(Rp2n+1) = Z/2;G(L(p,q)) = Zip, where L(p,q) is a 3­

dimensional Lens space of type (p,q).
(7) If X is a finite polyhedron and x(X) ::I' 0, then C(X) = {I}.

To indicate the role played by C(X) in influencing the structure of
a space X, we note the following

THEOREM (SEE [C3] AND [0]). Let h denote the Hurewicz homo­
morphism. If h(C(X)) contains a free summand of H 1(X; Z) of rank
n, then

X ~ Y x T n
,

where Tn denotes the n-torus.

Finally, we mention the following nontriviality result due to Lang.

THEOREM ([L]). Let Y be a l-connected topological group and H
a finite subgroup with H n Z(Y) ::I' {1}. Then, under the action of H
on Y by left translation,

H n Z(Y) ~ G(Y/H).

In particular, note that for Y = S3 and H = any of the binary
polyhedral subgroups, the theorem implies G(S3 / H) = ZH.

2. Gottlieb's lifting theorem

Let a E C(X) and denote by A : S1 x X ~ X an associated map
with Alsl ~ a and Alx ~ Ix. The induced map on cohomology gives,

A*(X) = 10x+A0xA

where x E Hn(x) and A is a chosen generator of H 1(S1). Note that
XA E Hn-1(X) and, although XA depends on A, we do not denote this.

Recall that a fibration p : E ~ B is a principal K(1r, r)-fibration if it

is apullbackof the pathfibration K(1r,r) ~ PK(1r,r+l)!-. K(1r,r+l)
via a map k : B ~K(1r,r + 1). If z E Hr+l(K(1r,r + 1);1r) is the
characteristic class, then let k*(z) = p E Hr+l(B; 1r) and recall that a
map f: Y ~ B has a lifting 1: Y ~ E if and only if r(p) = o.

We now present a fundamental lifting result due to Gottlieb [C2] and
generalized in [HV] and [H]. Our proof is a straightforward application
of obstruction theory for fibrations. Although we state the theorem for
SI , the same result (and proof) holds for sn.
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THEOREM 1. Let p : E -. B be a principal K(7r, r )-fibration (r > 0)
and let A : SI X B -. B be a map with AIB = lB. Then, there exists
a map A : SI X E -. E with AlE = lE and a commutative diagram

SI X E

SI X B

---+1 E

A
---+) B

if and only if JlA = 0 E Hr(Bj 7r).

REMARK. Without loss of generality we can take the diagram to be
homotopy commutative. This follows from our conventions about the
types of spaces involved and the homotopy lifting property.

Proof. Suppose A and the commutative diagram exist. Then

(1 X p)*A*(Jl) = A*p*(Jl)

= A*p*k*(z)

=0

sincep*k* = (kp)* = (pk)* with k: E -. PK(7r,r+1) and PK(7r,r+l)
contractible.

Now,

0= (1 X p)*A*(Jl)

=(1 xp)*(10Jl+'\0JlA)

= 1 @p*(Jl) +,\ 0P*(JlA)'

As above, p*(Jl) = 0, so 0 = P*(JlA).
Because P : E -. B is a principal K(7r, r )-fibration, it is orientable

for any coefficients. Hence, we obtain a Serre sequence,

-. H S (Bj7r) -. H S (Ej7r) -. H S (K(7r,r)j7r) -. H s+I(Bj1f') -. ...

-. Hr(Bj 7r) -. Hr(Ej 1f') -. H r(K(7r, r)j 1f').
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This implies p* : Hi(Bj 1r) -+ Hi(E; 1r) is an isomorphism for i :$ r-1
and an injection for i = r. Since fJA E Hr(Bj 1r),P*(fJA) = 0 implies
fJA = O.

Conversely, suppose /LA = O. We wish to construct a lifting A in the
following diagram:

SI V E aVIE E--+ ,":'

1 _-,A'
, lp,(*) a = Alsl-

SI X E --~SI X B~ B

Because p : E -+ B is a principal K(1r, r)-fibration, we may apply
obstruction theory to obtain a single obstruction to the existence of A
lying in H r+I(SI x E, SI V Ej 1r).

In order to identify this obstruction we use the fact that the diagram

*
1

SI X E

----+1 SI V E

1
---+1 SI X E

induces an injection (arising from the cohomology sequence of a pair)
for i > 0,

By the naturality of obstructions to lifting, our obstruction pulls back
to an obstruction in Hr+l(SI x E; 1r) which is the obstruction to the
existence of a lifting in the diagram

E ---+

/ 1p pull

SI xE A~) B ~

PK

1
K(1r,r+1).

(Strictly speaking, we require a lifting which fixes the basepoint *.
However using the fact that * is nondegenerate and the homotopy
lifting property (as well as taking B -+ K (1r; r + 1) to be an inclusion)
we reduce to the situation above.)
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Now, the obstruction here is clearly

(1 X p)*A*k*(z) = (1 X p)*A*(JL)

= (1 X p)*(10 JL +A0 flA)

= 10p*(JL) + A0P*(JLA)

= A0 P*(JLA)

since p*(JL) = p*k*(z) = (kp)*(z) and kp ~ *.
By assumption JLA = 0, so the obstruction vanishes. Now, the in­

jectivity of Hr+l(SI x E,SI V Ej7f') -+ Hr+l(SI x Ej7f') then implies
the vanishing of the obstruction to our original problem. Hence, the
desired lifting A exists.

3. Consequences

In this section we use the lifting theorem of §2 to relate the Gottlieb
Group of a space to that of a stage in its Postnikov tower.

THEOREM 2. Let X(n) denote the nth term in the Postnikov tower
of X. Then G(X(x + 1» ~ G(X(n» and G(X(n + 1» is identified as
the elements ofG(X(n» which may be lifted via a diagram

SI x X(n + 1)

lx,l
SI x X(n)

----+) X(n + 1)

1,
A

X(n)

where A is an associated map.

Proof. Let A be associated to a E G(X(n+ 1». We shall show that
A is the lift of an a-associated map A. Now, given A the naturality of
Postnikov systems provides a homotopy commutative diagram:

SI X X(n + 1)

lx,l
SI x X(n)

----+) X(n +1)

A
X(n)
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where we have used the fact that SI (n) = SI. Clearly, the restric­
tion of A to SI gives P#(a) = a under the natural identification of
fundamental groups. Also, consider the restriction

X(n + 1)

pi

X(n)

1
----+ X(n + 1)

Ip

AI
----+ X(n).

Taking X(n + 1) -+ X(n) to be an inclusion, we find the obstructions
to the existence of a relative homotopy from AI to the identity lie in

Hk(X(n),X(n +1); 1rk(X(n)) = O.

Hence AI ~ 1X(n) and A is an associated map to a. Therefore a E
G(X(n)).

REMARK. If A : SI x X -+ X is an associated map for a space X,
then the naturality of Postnikov systems provides compatible associ­
ated maps for each term and each fibration in the tower. Therefore if, at
any stage, we can show that no associated maps lift, then G(X) = {I}
by Theorem 2.

For example, let X = X(2) be a two-stagePostnikov system and
suppose a E Z1r I X. We then obtain an associated map of spaces (with
1rI X = 1r)

A
SI X K(1r, 1) -+ K(1r, 1)

which is induced by a homomorphism

tP
ZX1r-+1r

given by: tP(n,x) = anx. (Note that tP is a homomorphism precisely
because a E Z1r.) Now, a E G(X) if and only if there is a homotopy
commutative diagram

1
X

1
A

---+1 K(1r, 1)
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where A is an associated map.
Theorem 2, together with the Remark, may be used to analyze the

structure of the Ganea space. This infinite dimensional space was
constructed by Ganea [G] to answer negatively the question posed by
Gottlieb [G1] of whether a simple space with nontrivial fundamental
group must have nontrivial Gottlieb group. (A finite dimensional ex­
ample has only recently been constructed in [0].)

EXAMPLE. Construct the Ganea space X as a principal K(Z/2, 2)­
fibration over RP(oo) = K(Z/2, 1) induced by the nontrivial element
of H 3 (RP(00); Z/2) ~ Z/2. This element is the cube Z3 of the polyno­
mial algebra generator t in degree 1. Let a be the nontrivial element
of 1il X = Z/2.

We have A : 51 x K(Z/2, 1) -+ K(Z/2,1) as in the Remark and,
by Theorem 1, we know the obstruction to the existence of a lift A is
z~ E H 2(K(Z/2, 1); Z/2). Now, we can compute z~ by,

Hence, z~ = z2 =J O. Therefore a lift of A does not exist and G(X) =
{I}.

We now show that, for finite complexes, there are only a finite num­
ber of obstructions to lifting elements of the center of the fundamental
group to Gottlieb elements.

THEOREM 3. Let X be a finite complex of dimension n. If a E
Z1ilX can be lifted to X(n), then a E G(X).

Proof. By assumption there is a commutative diagram

51 x X(n)

1
51 X K(1i, 1)

A
X(n)

1
A

I K(1i,1)

where 1i = 1ilX, Alsl = 0:' and AIX(n) = 1X(n)' First, we consider the
problem oflifting A to an associated map A: 51 xX(n+1) -+ X(n+1).
The obstruction to lifting is J1.A E Hn+l(X(n); 7l"n+lX). Now, the
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Whitehead Theorem shows that the map X -+ X(n) induces Hi(X) ~
Hi(X(n)) for i ~ n and a surjection H n+l (X) -+ H n+l (X(n)). How­
ever, H n+l (X) = 0, so H n+1(X(n)) = 0 as well. Also, since X is
n-dimensional, Hn(X) ~ Hn(X(n)) is free abelian. The universal co­
efficient theorem now gives,

H n+1(X(n); 7r n+lX) ~ Hom(Hn+1(X(n)), 7rn+1 X )

EEl Ext(Hn (X(n)),7rn+lX) = O.

Therefore A exists.
Now, for j > n, the obstruction to a lift from SI x XCi) -+ X(j)

to SI X X(j + 1) -+ X(j + 1) lies in Hj+l(X(j); 7rj+ l X) = 0 (since
Hj+lX(j) = 0 and Hj(X(j)) ~ Hj(X) = 0).

Therefore, if A can be lifted to A, then A can be lifted to any stage
of the Postnikov tower. Of course, at each stage many liftings might
exist, but no matter which is chosen it may be lifted further to make
all diagrams commutative. Hence we obtain a map

(Aj ) : SI x limX(j) -+ limX(j)
+-- +--

so that (Aj)\sl = 0 (by identifying fundamental groups). Let 4>: X -+

limX(j) denote the standard weak equivalence and note that there
+--
then exists a unique homotopy class A : SI x X -+ X which makes the
following diagram homotopy commutative.

SI xX
A

X

1x<t>1 1<1>

SI x limX(j)
(Ai)

• limX(j)
+-- +--

Clearly, AI51 = O. To see that Alx ::::: lx, observe that dim(X) = n
provides a bijection of homotopy classes [X,X] £:f [X(n),X(n)] and
Alx corresponds to AnIX(n) ::::: IX(n)' The bijection then implies Alx ~
Ix.

Hence, A is a map associated to a E Z 7rl X and, therefore, a E
G(X).

We close this section with some examples of calculations of G(X),
using Theorem 3, which will lead us to our main result in §4.
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EXAMPLE 1. X = RP(2n + 1).
XCI) = RP((0) and X(2n +1) is obtained as a principal K(Z,2n +

I)-fibration induced by the nontrivial element f3 E H 2n+2(RP((0); Z)
~ Zj2. It is easy to see that {3 == a n+ l for 0 =f:. a E H 2(RP(00); Z).
Then, given A : SI X K(Z/2, 1) -+ K(Zj2, 1) associated to the nonzero
element of 1r l X ~ Z/2, the obstruction {3A to a lift A: SI xX(2n+I) -+

X(2n + 1) is identified as follows:

A*(f3) == A*(an +l
) = (A*(a»n+! == (10 a + A0 aAr+l

.

However aA E H l (RP(oo);Z) == 0, so A*({3) = I0an+ l == I0f3.
Hence, f3A = 0 and A exists. By Theorem 3, C(RP(2n + 1» ~ Zj2.

EXAMPLE 2. X == L(p,2n + 1).
Here, L(p, 2n +1) denotes the Lens space obtained as the orbit space

of the standard action of Zjp on s2n+l ~ e n+!. The same argument
as in Example 1 applied to the generator of the fundamental group of
the infinite dimensional Lens space shows that C(X) ~ Zjp.

EXAMPLE 3. X = S3/Q(8).
The quaternion group of order 8, Q(8) = {±I, ±i,±j,±kIi 2 == j2 =

k2 == -1, ij = k,j k = i, ki == j} is contained in S3 and operates
on S3 freely by left multiplication. Each element of Q(8), considered
as a homeomorphism of S3, is homotopic to the identity, so X is a
nilpotent 3-dimensional manifold. Indeed X is n-simple for all n > 1,
so possesses a Postnikov Tower after stage 1. The first k-invariant,
and the only one relavant to the determination of C(X), is an element
p. E H 4 (Q(8); Z) 9:! Zj8 (see [CED.

Now ZQ(8) == {±1}, so either C(X) == {I} or C(X) == {±I} ~ Zj2.
We may associate to -1 a map A: SI X K(Q(8), 1) -+ K(Q(8), 1) as
above and consider whether a lift to A : SI x X(3) -+ X(3) exists. The

x8
obstruction lies in H 3(Q(8); Z) 9:! Ker(Z --+ Z) == 0 (see [CE], p.254).
Hence, A exists, -1 lifts and C(X) == Zj2 == ZQ(8).

4. The Gottlieb group of spherical orbit spaces

Throughout this section H will denote a finite group acting freely
on an odd sphere ffln-l. Of course, the parity of the sphere is no
great restriction since the Lefschetz fixed point theorem implies that
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the only finite group acting freely on an even sphere is Z/2. The Lef­
schetz Theorem also shows that the action of H on s2n-l is orientation
preserving. Note that the three examples given at the end of §3 fit into
this framework. Recall that we are interested in proving

THEOREM A. G(S2n- 1 IH) = ZH.

The plan of proof is as follows: we begin by showing that a Post­
nikov tower for s2n-l IH may be erected after the first stage, allowing
Theorem 3 to be applied. We then use a group cohomology argument
to show that the obstruction to lifting to the (2n - 1)th stage vanishes
for any element in the center of H, implying the result.

Now, precisely, a "Postnikov tower for the space B2n-l IH after
the first stage" means a Moore-Postnikov factorization of the clas­
sifying map S2n- 1 /H __ K(H,I) of the universal cover s2n-l -­
s2n-l IH. As usual, we take the classifying map to be an inclusion.
For the theory of Moore-Postnikov factorizations the reader is referred
to Spanier [S, Ch.S, §3]. Suffice it to say that, according to Spanier,
a Moore-Postnikov factorization for s2n-l I H __ K(H,l) exists if it
can be shown that the pair (K(H, 1), s2n-l I H) is simple; that is,
7l"1(s2n-l IH) ~ H acts trivially on 7l"i(I{(H, 1), s2n-l I H) for all i.

LEMMA 4. (K(H, I),s2n-l IH) is (2n - I)-connected and simple.

Proof. The exact homotopy sequence of the pair (K, S), with K =
K(H, 1) and S = S2n- 1 IH,

shows that,

(1) 7l"l(K, S) = 0 since the map 5 -- K induces an isomorphism
of fundamental groups.

(2) 7l"2(K, S) = 0 since 1r2(K) = 0 and 1rl(S) -- 7l"l(K) is an
isomorphism.

(3) 7l"i( K, S) = 0 for 3 :s: i :s: 2n - 1 since 7l"i( K, S) ~ 7ri-l (5) ~
7ri_l(s2n-l) = 0 for i-I < 2n - 1.

Hence (K, S) is (2n - I)-connected. Now, the homotopy sequence
is a 1rl(S)-operator sequence, so the isomorphism 1ri(K, S) ~ 1ri-l(S)
(for all i ~ 3) is compactible with the respective actions of 1rl(S), The
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action of 'lrl(S) on 'It';-l(S), however, is compatible with the covering
transformation action of H on [sn, sn] (see [Si p.383]) and, since each
element of H is orientation preserving, this action is trivial. Hence,
the action of 'lr1(S) on 'lr;(K, S) is trivial for all i and (K, S) is simple.

COROLLARY 5. s2n-1 / H -t K(H, 1) bas a Moore-Postnikov fac­
torization,

Proof. [S; Thm. 6, p. 444].
The following result will entail the vanishing of our obstructions to

lifting Gottlieb elements. Although the result is an immediate conse­
quence of the material in [CE;Ch. 12], we know of no specific reference
to a proof, so we provide a proof below.

LEMMA 6. IfH is a finite group wbich acts freely on a spbere, then
H2k - 1 (H; Z) = 0 for k ? 1.

Proof. Let i : Sp -t H denote the inclusion of a Sylow p-subgroup
and consider the induced map i* : H*(H) -t H*(Sp) and the transfer
T : H*(Sp) -t H*(H) with coefficients understood to be Z. It is well
known that the composition Ti* is simply multiplication by the index
[H: Sp].

However, by [CE; Thm. 11.6, Ch. 12 and Application 4, p. 357], Sp
is either cyclic or generalized quaternion and, therefore (by the explicit
calculations [CE; p. 252 and p. 254]), has H2k-1(Sp) = 0 for k ? 1.

Thus, [H : Sp] . H2k-1(H) = 0 and this is true for al Sylow sub­
groups. We know each element a =1= 0 of H 2k-1(H) has order o(a)
dividing the order of H, so let p be a prime with plo(a)/ IHI. Since
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[H : Sp] . H 2k - l (H) = 0, then plo(a)1 [H : Sp]. This is a contradiction
since [H : Sp] is relatively prime to p and so a = O.

Proof of Theorem A. Of course G(S2n-l/H) ~ ZH, so we must
show the reverse inclusion. Let a E ZH and, as usual, construct the
map A : SI x K (H, 1) -+ K (H, 1) corresponding to the homomorphism,

Z x H -+ H, (n,x) 1-+ anx.

Because dim(S2n-l / H) ::; 2n - 1, Theorem 3 assures us that a lifting
of A to A (below) suffices to show a E G(S2n-l / H).

SI X s2n-l / H(2n - 1)
A

I s2n-l/H(2n-1)

1 xp1 1p

SI x K(H,l)
A

K(H,l)

By Corollary 5, p is a principal K(Z,2n - 1) fibration, so Theorem 1
applies and the obstruction to the existence of A lies in H 2n- 1(K(H, 1);
Z) ~ H 2n-l(Hj Z). By Lemma 6, this group is zero, so the ob­
struction vanishes and A exists. Hence a E G(B2n-1 / H) and ZH ~

G(S2n-l / H).

REMARK. Subsequent to the proof of the general result Theorem A,
AlIen Broughton has given a very nice representation-theoretic proof
in the special case of a linear action [BJ. For the convenience of the
more geometric minded reader, we give Broughton's proof in case H
is a subgroup of the unitary group U(n) acting on en. Decompose
en into irreducibles; en = EB7=1 Vi, Let a E ZH and note that,
by Schur's Lemma, because a commutes with every element of H, on
each Vi a acts as multiplication by a scalar Ai. Also note that lAd = 1
since a is of finite order. Now observe that the k-torus SI x .. , X Sl
acts on en unitarily via each element of the ph circle acting by scalar
multiplication on Vi (and thus commuting with H). Hence we have,

ZH ~ SI x ... X SI ~ U(n).

Because ZH is contained in the connected group SI x ... X SI we
can follow the method of Lang [L; Thm.II.4] to show that the covering
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transformation a : s2n-l --+ ·s2n-l is equivariantly homotopic to the
identity. By property (2) of §1, then a E G(s2n-l / H) and the result
is proved. The required homotopy K : S2n-l X 1-+ s2n-l is given by

K(x, t) = <7(t) . X

where <7 : I --+ SI X ... X SI is a path with <7(0) = I (the identity) and
<7(1) = a. (Also note that <7(t) . x represents the action of the torus
on s2n-l ~ en as above.) Then K(x,O) = x, K(x, 1) = a' x and, for
hE H, hK(x, t) = h<7(t) . X = <7(t)h . x = <7(t) . (h. x) = K(h . x, t).
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