ON SPECIAL PROJECTIVE KILLING p-FORMS IN RIEMANNIAN MANIFOLDS*

JAE-BOK JUN

1. Introduction

Let M^n $(n \geq 1)$ be an *n*-dimensional Riemannian manifold and Δ denotes the Laplacian operator. A non-zero *p*-form *u* satisfying $\Delta u = \lambda u$ with a constant λ is called a proper form of Δ corresponding to the proper value λ .

In particular, if a function f satisfies $\Delta f = \lambda f$, then it is called the eigenfunction corresponding to the eigenvalue λ . Then, Tachibana has proved the following.

THEOREM A[7]. In a 2m-dimensional compact conformally flat Riemannian manifold with positive constant scalar curvature R = 2m(2m-1)k, the proper value λ of Δ for m-forms satisfies

$$\lambda \geq m(m+1)k$$

and the following relations hold:

$$V_{m(m+1)k}^m = C^m = C^m(d) \oplus K^m$$
, (direct sum).

Here and throughout this paper, V_{λ}^{p} , C^{p} etc. denote vector spaces with natural structure defined by

 V_{λ}^{p} = the proper space of p - forms corresponding to λ ,

 C^p = the space of all conformal Killing p - forms,

 $C^{p}(d)$ = the space of all closed conformal Killing p - forms,

 K^p = the space of all Killing p - forms,

 K_k^p = the space of all special Killing p - forms with k,

 SP_k^p = the space of all special projective Killing p - forms with k.

Received February 27, 1990. Revised February 8, 1991.

^{*}This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1989.

If M^n is compact and orientable, the decomposition $V_{\lambda}^p = (V_{\lambda}^p \cap d^{-1}(0)) \oplus (V_{\lambda}^p \cap \delta^{-1}(0))$ holds for $\lambda \neq 0$ from the decomposition theorem of Hodge-de Rham. The purpose of this paper is to introduce that special projective Killing p-forms become proper and find their proper value. In Section 2, we give preliminaries. The Killing, conformal Killing p-forms are recalled in Section 3. We shall discuss the purpose of this paper in Section 4.

2. Preliminaries

Let M^n (n > 1) be an n-dimensional Riemannian manifold. Throughout this paper, manifolds are assumed to be connected and of class C^{∞} . We denote respectively by g_{bc} , $R_{abc}{}^d$ and $R_{bc} = R_{rbc}{}^r$ the metric, the curvature and the Ricci tensor of a Riemannian manifold. We shall represent tensors by their components with respect to the natural basis, and shall use the summation convention.

For a differential p-form

$$u = \frac{1}{p!} u_{a_1 \cdots a_p} dx^{a_1} \wedge \cdots \wedge dx^{a_p}$$

with skew symmetric coefficients $u_{a_1\cdots a_p}$, the coefficients of its exterior differential du and the exterior codifferential δu are given by

$$(du)_{a_1 \cdots a_{p+1}} = \sum_{i=1}^{p+1} (-1)^{i+1} \nabla_{a_i} u_{a_1 \cdots \hat{a}_i \cdots a_{p+1}},$$

$$(\delta u)_{a_2 \cdots a_p} = -\nabla^r u_{ra_2 \cdots a_p},$$

where $\nabla^r = g^{rs}\nabla_s$, ∇_s denotes the operator of covariant differentiation, and \hat{a}_i means a_i to be deleted. For *p*-forms u and v the inner product $\langle u, v \rangle$, the lengths |u| and $|\nabla u|$ are given by

$$\begin{split} \langle u,v\rangle &= 1/p! u_{a_1\cdots a_p} v^{a_1\cdots a_p}, |u|^2 = \langle u,u\rangle, \\ |\nabla u|^2 &= \frac{1}{p!} \nabla_b u_{a_1\cdots a_p} \nabla^b u^{a_1\cdots a_p}. \end{split}$$

Denoting by $\Delta = d\delta + \delta d$ the Laplacian operator, we have $\Delta f = -\nabla^r \nabla_r f$ for function f and

$$(2.1) \qquad (\Delta u)_{a_1 \cdots a_n} = -\nabla^r \nabla_r u_{a_1 \cdots a_n} + H(u)_{a_1 \cdots a_n}$$

as the coefficients of Δu , where $H(u)_{a_1 \cdots a_p}$ are the coefficients of H(u) given by

$$(2.2) H(u)_a = R_{ar}u^r (p=1),$$

$$H(u)_{a_1 \cdots a_p} = \sum_{i=1}^p R_{a_i}{}^r u_{a_1 \cdots r \cdots a_p} + \sum_{i < j} R_{a_i a_j}{}^{rs} u_{a_1 \cdots r \cdots s \cdots a_p}$$

$$(n \ge p \ge 2).$$

In the second term on the right-hand side of the last above equation, the subscripts r and s are in the position of a_i and a_j respectively, and we shall use similar arrangements of indices without special notice, (2.1) may be written as follows:

(2.3)
$$\Delta u = -\nabla^r \nabla_r u + H(u).$$

3. The Killing and conformal Killing p-forms

A p-form u $(p \ge 1)$ is said to be Killing if it satisfies

$$\nabla_b u_{a_1 \cdots a_p} + \nabla_{a_1} u_{ba_2 \cdots a_p} = 0,$$

which is called the Killing-Yano's equation. Any Killing *p*-form is coclosed and it is easy to see that (3.1) is equivalent to the following equation:

$$(3.2) (du)_{a_1 \cdots a_{p+1}} = (p+1) \nabla_{a_1} u_{a_2 \cdots a_{p+1}}.$$

It is known that a Killing p-form u satisfies

$$(3.3) p\nabla^r \nabla_r u + H(u) = 0.$$

Hence, if we take account of (2.3), it follows that

$$(3.4) p\Delta u = (p+1)H(u).$$

A Killing p-form u $(p \ge 1)$ is said to be special with k, if it satisfies

$$(3.5) \qquad \nabla_c \nabla_b u_{a_1 \cdots a_p}$$

$$+ k \{g_{cb}u_{a_1\cdots a_p} + \sum_{i=1}^{p} (-1)^i g_{ca_i}u_{ba_1\cdots \hat{a}_i\cdots a_p}\} = 0,$$

with a constant k.

For example, any Killing p-form in the sphere of positive constant sectional curvature r is special with k = r.

Then it is known that

THEOREM B[8]. Let M be a complete simply connected Riemannian manifold admitting special Killing p-forms u and v with a positive constant k. If the inner product $\langle u, v \rangle$ is not constant, then M is isometric with $S^n(k)$.

We shall call a Killing 1-form which is special with constant 1 a Sasakian structure and a Riemannian manifold admitting such a structure is called Sasakian [8]. Moreover, we have proved

LEMMA 3.1[9]. In any n-dimensional Riemannian manifold, we have

$$\begin{split} K_k^p \subset V_{(p+1)(n-p)k}^p &\quad (n \geq p \geq 1), \\ \Delta(d^{-1}(0) \cap \delta^{-1}(K_k^{p-1})) \subset V_{p(n-p+1)k}^p &\quad (p > 1), \end{split}$$

where k is any constant.

A p-form u $(p \ge 1)$ is said to be conformal Killing, if there exists a (p-1)-form θ called the associated form such that

(3.6)
$$\nabla_b u_{a_1 \cdots a_p} + \nabla_{a_1} u_{ba_2 \cdots a_p} = 2\theta_{a_2 \cdots a_p} g_{ba_1} - \sum_{i=2}^p (-1)^i (\theta_{ba_2 \cdots \hat{a}_i \cdots a_p} g_{a_1 a_i} + \theta_{a_1 \cdots \hat{a}_i \cdots a_p} g_{ba_i}).$$

For a conformal Killing p-form u, the following equations hold

$$\delta u = -(n-p+1)\theta,$$

$$(3.8) (du)_{ba_1\cdots a_p} = (p+1)\{\nabla_b u_{a_1\cdots a_p} + \sum_{i=1}^p (-1)^i \theta_{a_1\cdots \hat{a}_i\cdots a_p} g_{ba_i}\},$$

(3.9)
$$p\nabla^r\nabla_r u + H(u) + \frac{2p-n}{n-p+1}d\delta u = 0.$$

It should be noticed that (3.8) is equivalent to (3.6). From (3.6) and (3.7) we have $K^p = C^p \cap \delta^{-1}(0)$. On the other hand, a simple calculation shows

(3.10)
$$K_k^p \subset d^{-1}(C^{p+1}(d))$$

to be valid for any constant k. Then we have proved the following

LEMMA 3.2[9]. In any n-dimensional Riemannian manifold, we have

$$\begin{split} K^p \cap V^p_{(p+1)(n-p)k} \cap d^{-1}(C^{p+1}(d)) &= K^p_k \quad (n > p), \\ C^p(d) \cap V^p_{p(n-p+1)k} \cap \delta^{-1}(K^{p-1}) &\subset \delta^{-1}(K^{p-1}_k) \quad (p > 1), \end{split}$$

for any constant k.

4. Theorems

An exact p-form $d\theta$ $(p \ge 1)$ is said to be special projective Killing with constant k, if it satisfies the following two equations.

$$(4.1)$$

$$\nabla_{c}\nabla_{b}(d\theta)_{a_{1}\cdots a_{p}}$$

$$= k\{-g_{cb}(d\theta)_{a_{1}\cdots a_{p}} + \sum_{i=1}^{p} g_{ca_{i}}(d\theta)_{a_{1}\cdots b\cdots a_{p}}\}$$

$$-(p+1)k\sum_{i=1}^{p} (-1)^{i-1}(g_{ca_{i}}\nabla_{b}\theta_{a_{1}\cdots \hat{a}_{i}\cdots a_{p}} + g_{ba_{i}}\nabla_{c}\theta_{a_{1}\cdots \hat{a}_{i}\cdots a_{p}}),$$

$$(4.2) \quad \nabla_c(d\theta)_{ba_2\cdots a_p} + \nabla_b(d\theta)_{ca_2\cdots a_p}$$
$$-(p+1)(\nabla_c\nabla_b\theta_{a_2\cdots a_p} + k\sum_{i=2}^p g_{ba_i}\theta_{a_2\cdots c\cdots a_p}) = 0.$$

Here and in the sequel, let us consider a special projective Killing p-form $d\theta$ $(p \ge 1)$ in an n-dimensional Riemannian manifold.

Transvecting (4.1) with g^{cb} , we have,

$$(4.3) \qquad \nabla^r \nabla_r (d\theta)_{a_1 \cdots a_p} + k(n+p+2)(d\theta)_{a_1 \cdots a_p} = 0.$$

On the other hand, by interchanging indices c and b in (4.1) and making use of the Ricci's identity, we have

$$(4.4) \sum_{i=1}^{p} R_{cba_{i}}^{e}(d\theta)_{a_{1}\cdots e\cdots a_{p}} + k\{\sum_{i=1}^{p} g_{ca_{i}}(d\theta)_{a_{1}\cdots b\cdots a_{p}} - \sum_{i=1}^{p} g_{ba_{i}}(d\theta)_{a_{1}\cdots c\cdots a_{p}}\} = 0.$$

Contracting the above equation with g^{ba_1} , we obtain

$$R_c^e(d\theta)_{ea_2\cdots a_p} + \frac{1}{2} \sum_{i=2}^p R_{ca_i}^{rs} (d\theta)_{ra_2\cdots s\cdots a_p} - k(n-p)(d\theta)_{ca_2\cdots a_n} = 0.$$

Also, taking the skew symmetric parts with respect to all the indices in the above equaiton, we can easily verify that

$$\sum_{i=1}^{p} R_{a_i}^{e}(d\theta)_{a_1 \cdots e \cdots a_p} + \sum_{i < j} R_{a_i a_j}^{rs}(d\theta)_{a_1 \cdots r \cdots s \cdots a_p} - p(n-p)k(d\theta)_{a_1 \cdots a_p} = 0.$$

Therefore, by virtue of (2.2), the above equation can be rewritten as

$$(4.5) H(d\theta) - p(n-p)k(d\theta) = 0.$$

Hence we have, from (2.3), (4.3) and (4.5)

$$\Delta(d\theta) = (p+1)(n-p+2)k(d\theta),$$

which shows that $d\theta$ is a proper form of Δ corresponding to the proper value (p+1)(n-p+2)k. Hence we can conclude the following.

THEOREM 4.1. In any n-dimensional Riemannian manifold, we have

$$SP_k^p \subset V_{(n+1)(n-n+2)k}^p \quad (n \ge p \ge 1),$$

where k is any constant.

Next, let w be a closed p-form (p > 1) such that $d\delta w$ is special projective Killing with k, that is, $w \in d^{-1}(0)$ and $d\delta w \in SP_k^p$.

Since w is closed, we know $\Delta w \in SP_k^p$. Thus we can obtain from Theorem 4.1 that

$$\Delta \Delta w = (p+1)(n-p+2)k\Delta w,$$

because of $\Delta = d\delta + \delta d$. Hence it holds

THEOREM 4.2. In any n-dimensional Riemannian manifold, we have

$$\Delta(SP_k^p) \subset V_{(n+1)(n-n+2)}^p \quad (p>1),$$

where k is any constant.

References

- J. B. Jun, S. Ayabe and S. Yamaguchi, On the conformal Killing p-form in compact Kaehlerian manifolds, Tensor, N. S., 42(1985), 258-271.
- 2. J. B. Jun and S. Yamaguchi, On projective Killing p-forms in Riemannian manifolds, Tensor, N. S., 43(1986), 157-166.
- 3. _____, On projective Killing p-form in Sasakian manifolds, Tensor, N. S., 45(1987), 90-103.
- 4. M. Kora, On projective Killing tensor in Riemannian manifolds, Math. J. Okayama Univ., 21(1979), 1-9.
- 5. _____, On conformal Killing forms and the proper space of Δ for p-forms, Math. J. Okayama Univ., 22(1980), 195-204.
- S. Tachibana, On projective Killing tensor, Nat. Sci. Rep. Ochanomizu Univ., 21(1970), 67-80.
- On the proper space of Δ for m-forms in 2m-dimensional conformally flat Riemannian manifolds, Nat. Sci. Rep. Ochanomizu Univ., 28(1978), 111-115.
- 8. S. Tachibana and Yu. W. N., On a Riemannian space admitting more than one Sasakian structure, Tohoku Math. J., 22(1970), 536-540.
- S. Tachibana and S. Yamaguchi, The first proper space of Δ for p-forms in compact Riemannian manifolds of positive curvature operator, J. Differential geometry, 15(1980), 51-60.

Department of Mathematics Educations Kookmin University Seoul 136-702, Korea