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VARIATIONAL INEQUALITIES AND

EXTREMAL PRlNCIPLES

SEHIE PARK

1. Introduction

In the 1930's, earlier works of Nikodym [15] and Mazur and Schauder
[13] initiated the abstract approach to problems in calculus or varia­
tions. In 1966, Hartman and Stampacchia [9] proved the following
remarkable result: for a continuous map f on a compact convex subset
K of Rn into Rn, there exists an Xo E K such that (fxo, x - xo) $ 0
for all x E K. They were also able to generalize their problem to a
monotone function on a closed convex set in a reflexive Banach space.

Since the appearance of the Hartman-Stampacchia paper and one of
Browder [4], such variational inequalities have received a: great deal of
attention and have been investigated and generalized in various points
of views by a number of authors. The theory of variational. inequal­
ities has been used in a large variety of problems in nonlinear analy­
sis, convex analysis, partial differential equations, mechanics, physics,
optimization, and control theory.

Let E be a Hausdorff topological vector space (simply t.v.s. through­
out this paper) and E* its topological dual. Let us denote the pairing
between E* and E by (w,x) for w E E* and x E E. The typical
variational inequality problem (VIP) is the following:

Given a nonempty set X c E, a function f : X -+ E*, and a real
function h : X -+ R, find a point Xo E X such that

Re(fxo,:to - y) $ hey) - h(xo) for all yE X.

Such Xo is called a solution of the VIP.
There are various types of generalizations or variations of such prob­

lem.
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Our purpose in this paper is to extend and unify basic results con­
cerning variational inequalities and to give new and much simpler
proofs of them. Our method is based on the generalized Fan-Browder
fixed point theorem for noncompact convex spaces due to the author
in his previous work [16J. Following the same line to [16], we obtain
a number of new and generalized variational inequalities and their ap­
plications.

Section 2 is for preliminaries.
In section 3, we obtain sufficient conditions for the existence of solu­

tions to abstract variational inequalities. Some basic results of Gwinner
[8], Lassonde [10J, Mosco [14J and Tan [21], and minimax inequalities
due to Ky Fan [6], Brezis, Nirenberg, and Stampacchia [10], AlIen [IJ,
Takahashi [20], Tan [21J and Lin [11] are extended and unified.

Section 4 deals with the extremal principle of Mazur and Schauder
[13]. Their principle is generalized and strengthened in various view­
points.

2. Preliminaries

We follow mainly Lassonde [10] and our previous work [16J.
A convex space X is a nonempty convex set (in a vector space) with

any topology that induces the Euclidean topology on the convex hulls
of its finite subsets. In fact, if the convex space X is in a vector space
E, we may regard that X has the relative finite topology. We recall
that a set A in E is said to be finitely open if its intersection with any
finite dimensional manifold M in E is open in the Euclidean topology
of M. We note that any subset A of E open in a Hausdorff t.v.s.
.topology on E must be finitely open.

A nonempty subset L of a convex space X is called a c-compact set
if for each finite subset SeX, there is a compact convex set Ls eX
such that L uSe Ls. A subset A of a topological space Y is said to
be compactly closed [resp. open] in Y if for every compact set KeY
the set An K is closed [resp. open] in K.

A real-valued function I : X -+ R on a topological space X is lower
[resp. upper] semicontinuo'U.'l (l.s.c.) [resp. u.s.c.J if {x EX: I x > r}
[resp. {x EX: Ix < r}] is open for each r E R; if X is a convex set in
a vector space, then I is quasi-concave [resp. quasi-convex] whenever
{x: X: Ix> r} [resp. {x EX: Ix < r}J is convex for each r E R.
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For a subset J{ of a t.v.s. E and an x E E, the inward and outward
sets of J{ at x, IK(x) and OK(X), are defined as follows:

IK(x)::={x+r(u-x)EE:uEK, r>O},

OK(X) ::= {x - r(u - x) E E : u E K, r > O}.

Note that K C IK(x) and that if x is an internal point [5, pAlOJ of
K, then IK(x) = OK(X) = E. Note also that every interior point is
internal [5, p.413J.

The boundary and interior will be denoted by Bd and Int, resp.
The following is due to the author [16J as a generalized Fan-Browder

fixed point theorem :

THEOREM O. Let X be a convex space, Y a topological space, and
A, B : X -+ 2Y multifunctions satisfying the following:

(a) Bx C Ax for each x EX,
(b) A-1y is convex for each y E Y,
(c) B-1y =I- 0 for each yE Y,
(d) B x is compactly open for each x EX, and
(e) for some c-compact set LeX, the set Y\B(L) is compact.
Then, for any continuous function s : X -+ Y, there exists an XQ E X

such that sXQ E AXQ.

3. Abstract variational and minimax inequalities

As a direct application of Theorem 0, we obtain the following suffi­
cient conditions for the existence of solutions to an abstract variational
inequality:

THEOREM 1. Let X be a convex space, p, q : X x X -+ R U {+oo}
and h : X -+ R U { +oo} functions satisfying

(i) q(x,y) :::; p(x,y) for (x,y) E X x X and p(x,x) :::; 0 for all
x E X,

(ii) for each y E X, {x EX: p(x,y) + hey) > hex)} is convex or
empty,

(iii) for each x EX, {y EX: q(x,y) + hey) > hex)} is compactly
open, and

(iv) for some c-compact set LeX,

K::= {y EX: q(x,y) + h(y):::; hex) for all x E L}
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is compact.

Tben tbere exists a point yo E K such tbat

q(x,yo)+h(yo)::;h(x) forall xEX.

Moreover, tbe set of all solutions Yo is a. compact subset of K.

Proof. Define multifunctions A, B : X -t 2x by

Ax == {y EX: p(x, y) + h(y) > h(x)},

Bx == {y EX: q(x,y) + h(y) > h(x)}

for x EX. IT B-1yo = 0 for some Yo E X, then the conclusion follows.
Suppose that

(c) B-1y i= 0 for each y E X.
We also have the following:

(a) Bx C Ax for each x E X, by (i).
(b) A-1y is convex for each y E X, by (ii).
(d) Bx is compactly open for each x E X, by (iii).
(e) K == {y EX: y rt. Bx for all x E L} = X\B(L).

Therefore, by Theorem 0, there exists an Xo E X such that Xo E Axo.
However, this implies p(xo,xo) + h(xo) > h(xo), which contradicts the
condition (i). Moreover, the set of all solutions is the intersection

n{y E K: q(x,y) + h(y)::; hex)}
xEX

of compactly closed subsets of the compact set K. This completes our
proof.

REMARKS.

1. The conditions (ii) and (iii), resp., can be replaced by the follow­
mg:

(ii)' for each y E X, p(',y) - h(·) is quasiconcave on X whenever
h(·) < +00.

(iii)' for each x EX, q(x,') + h(·) is l.s.c. on compact subsets of X.
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2. In case when X is a closed convex subset of a t.v.s. E, the
condition (iv) is implied by the following "coercivity condition":

(iv)' a compact set C c E and an x E X n C can be found such
that

q(x, y) + hey) > hex) for all yE X\C.

In fact, we can choose L = {x}. Then our set KC X n C is compact.
Therefore, for p == q, Theorem 1 generalizes Mosco [14, Theorem

2.1J and Gwinner [8, Theorem 2].

COROLLARY 1.1. Let X be a convex space, h : X -. RU {+oo}
a l.s.c. convex function, and p, q : X x X -. R U {+oo} functions
satisfying

(i) q(x, y) S p(x, y) for each (x, y) E X x X and p(x, x) S 0 for
allxEX,

(ii) for each y E X, p(.,y) is concave on X,
(iii) for each x EX, q(x,·) is l.s.c. on compact subsets of X, and
(iv) for some c-compact set LeX,

K == {y EX: q(~,y) + hey) S hex) for all x EL}

is compact.

Then there exists a Yo E K such that

q(x, YO) + h(yo) S hex) for all x E X.

Proof. Since the sum of two concave functions is concave, for each
!J E X, p(" y) - h(·) is concave whenever h(·) < +00. Since the sum
of two l.s.c. functions is l.s.c., for each x E X, q(x,·) + hO is l.s.c.
on compact subsets of X. Therefore, by Theorem 1, the conclusion
follows.

REMARKS.

1. For p == q, Corollary 1.1 is due to Lassonde [10, Proposition 1.4].
2. For p == q, Corollary 1.1 improves Gwinner [8, Theorem 3]. In

fact, Gwinner obtained his result under the stronger assumptions that
p = q is pseudo-monotone and that the coercivity condition (iv)' in
Remark 2 of Theorem 1, instead of (iv).

For h == 0, Theorem 1 reduces to the following:
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COROLLARY 1.2. Let X be a convex space, and p,q : X x X -+

R U {+oo} functions satisfying

(i) q(x,y) ::; p(x,y) for (x,y) E X x X and p(x,x) ::; D for all
x EX,

(ii) for each y E X, {x EX: p(x,y) > D} is convex or empty,
(iii) for eacb x EX, {y EX: q(x,y) > D} is compactly open, and
(iv) for some c-compact set LeX,

K == {y EX: q(x, y) ::; D for all x E L}

is compact.

Tben tbere exists a Yo E K such tbat q(x, Yo) ::; Dfor all x EX. Tbus,
in particular,

inf sup q(x,y)::; D.
lIEK zEX

REMARKS.

1. The condition (iii) is implied by
(iii)' for each x EX, q(x,·) is l.s.c. on compact subsets of X.

In this case, the conclusion becomes

min sup q(x, y) ::; D.
yEK zEX

2. The condition (iv) is implied by
(iv), for some c-compact set LeX, we have K C L.
This fact was noted by Lin [11].
Tan [21, Theorem 1] is a particular form of Corollary 1.2 with (iii)'

and (iv)' instead of (iii) and (iv), resp. Other results in Tan [21] can
also be improved in the same way. See Remark 9 of Lin [11, p.i16].

3. IT X is a closed convex subset of a t.v.s. E, the coercivity
condition (iv) can be replaced by

(iv)" for some c-compact set L of E,

K == {y EX: q(x, y) ::; D} for all x E L n X}

is compact.
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Therefore, Corollary 1.2 improves Shih and Tan [18, Theorem 3].
Moreover, their assumption (d) is superfluous.

4. For p == q, Corollary 1.2 generalize Aubin and Ekeland [2, Theo­
rem 6.9]' Takahashi [20, Theorem 2.1], and AlIen [1, Theorem 2J.

5. For p == q, Corollary 1.2 improves the well-known result of Brezis,
Nirenberg, and Stampacchia [3, Theorem 1]. If X is a closed convex
subset of a t.v.s. E, instead of (iii) and (iv) in Corollary 1.2, the
authors assumed the following:

(3) For any fixed x E X, p(x,y) is a l.s.c. function of y on the
intersection of X with any finite dimensional subspace of E.

(5) There is a compact subset K of E and Xo E K n X such that
p(xo, y) > 0 for all y E X\K.

Note that (3) implies (iii). For (3) implies that {y EX: p(x,y)
> r} is finitely open in X for each r E R and x EX. Recall that X is
equipped with the finite topology.

The condition (5) implies (iv). For, choose L = {xo}. Then the set

{y EX: p(xo, y) :::; O} eX n K,

because if y E X\K, then p(xo, y) > 0, and hence compact.
Note also that their condition (4) is superfluous.
Similarly, in their application 2 in [3], the conditions (10) and (11)

are superfluous.
6. If X is compact, then (iv) is satisfied automatically. In this case,

for p == q, Corollary 1.2 improves the Ky Fan minimax inequality [6].

COROLLARY 1.3. Let X be a convex space and p,q : X x X -+

R U {+oo} functions satisfying

(i) q( x, y) :s; p(x, y) for each (x, y) E X x X.

If a = sup p( x, x) < +00, suppose also that
xEX

(ii) for each y E X, {x EX: p(x,y) > a} is convex or empty,
(iii) for each x EX, {y EX: q(x,y) > a} is compactly open, aIld
(iv) for some c-compact set LeX,

K == {y EX: q(x, y) :s; 0' for all x EL}

is compact.
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inf supq(x,y) S supp(x,x).
yEK zEX zEX

Proof. IT sup p(x, x) = +00, the conclusion holds trivially. Suppose
zEX

that sUPzEX p(x, x) = a < +00. Applying Corollary 1.2 to p(x, y) - a
and q(x, y) - a instead of p(x, y) and q(x, y), we have the conclusion.

REMARKS.

1. Corollaries 1.2 and 1.3 are actually equivalent.
2. IT we replace (iii) by
(iii)' for each x EX, q( x, .) is 1.s.c. on compact subsets of X,

then the conclusion is

minsupq(x,y) S supp(x,y).
yEK xEX xEX

3. Note that Corollary 1.3 improves Lin [11, Theorem 6] and gener­
alizes Tan [21, Theorem 2].

4. IT X is a closed convex subset of a t.v.s. E, the condition (iv) is
implied by

(iv)' there exist a nonempty compact subset C of E and Xo E xnC,
we have q(xo, y) > a for all y E X\C.

In fact, we can choose L = {xo} and K eX n C.
Therefore, Corollary 1.3 extends Shih and Tan [18, Theorem 2].
5. For a compact X, Corollary 1.3 holds without assuming (iv). In

this case, if we assume (iii)' instead of (iii), then the conclusion is

minsupq(x,y) S supp(x,y),
yEX xEX xEX

since sup q(x, .) is 1.s.c. on X.
xEX

In this case, Corollary 1.3 improves Yen [22, Theorem 1].
6. For a compact X, if p == q, Corollary 1.3 improves the Ky Fan

minimax inequality [6] and Takahashi [20, Lemma 1].



Variational inequalities and extremal principles 53

COROLLARY 1.4. Let H be a real Hilbert space, X a nonempty
closed convex subset of H, and a(·,.) a continuous bilinear [arm on H
which is coercive (i.e., there is a constant 'Y > 0 such that a(v, v) ?
'Yllvl12 for all v EH). Then for every v' E H*, there exists a unique
vector u E X such that

a(u,u-w)s(v',u-w) for all wEX.

Proof. Apply Corollary 1.1 with H endowed with its weak topology,
h = -v', and p(v,w) = q(v,w) = a(v,v - w) for v,w E X. Then all
assumptions of Corollary 1.1 are satisfied. In particular, as to the
coercivity condition (iv)' in Remark 2 of Theorem 1, by taking Wo to
be a vector in X n C, where C = {v EH: IIvll S R} with R > 0
sufficiently large. In fact, since the form a(',') is coercive, we have
[a(v,v - wo) - (v',v - wo)J ---+ +00 as Ilvll ---+ 00. The uniqueness of
the solution u follows from a standard argument. This completes our
proof.

REMARKS.

1. Corollary 1.4 is due to Stampacchia [19] and Lions and Stam­
pacchia [12J. Also see Stampacchia [19, Theorem 2.1], which is the key
result in [19J.

2. The following particular form of Corollary 1.4 is popular in the
literature:

COROLLARY 1.5. Let H be a real Hilbert space, X a nonempty
dosed convex subset of H, and f : X ---+ H a continuous linear map
";Ilch that, for a given 0: > 0, we have (jx,x) ? o:IIxl12 for all x EH.
Then there exists a point Xo E X such that

(jxo,y-xo)?O foral] yEX.

Proof. Put a(x,y) = (Jx,y) and v' =0 in Corollary 1.4.

4. Extremal principles

In this section, we extend the key results in [17J which are general­
izations of the well-known classic result of Mazur and Schauder [13] on
minimum values.

From Theorem 1, we obtain the following:
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THEOREM 2. Let X be a convex space and h : X - R U {+oo} a
function satisfying

(a) for each y E X, {x EX: h(y) > h(x)} is convex or empty,
(b) for each x EX, {y EX: h(y) > h(x)} is compactly open, and
(c) for some c-compact set LeX,

K == {y EX: h(y) ~ h(x ) for all x EL}

is compact.

Then there exists a point Yo E K such that

h(yo) = min h(X).

Proof. Put p(x, y) == q(x, y) = 0 for (x, y) E X X X in Theorem 1.

The set of such yo is called the minimal set of h.

COROLLARY 2.1. Let X be a convex space and h : X - R U {+oo}
a l.s.c. quasiconvex function satisfying the condition (c). Then h have
a nonempty compact minimal set in K.

REMARK. Corollary 2.1 is due to the author and S.K.Kim [17, The­
orem 2], from which a generalization of well-known result of Mazur and
Schauder [13] is obtained in [17].

Finally, we have the following.

COROLLARY 2.2. Let X be a convex space in a vector space E, and
h : E - R U {+oo} a convex function satisfying the condition (c) of
Theorem 2 and that hlX is l.s.c. Then there exists a yo E K such that

h(yo) ~ h(x) for all x E Ix(yo).

Proof. By Corollary 3.1, there exists Yo E K such that h(yo) ~ h(x)
for all x E X. Suppose that there exists awE Ix(xo)\X such that
h(w) < h(yo). Then there exist u E X and r > 1 such that w =
yo + r(u - Yo), i.e.,

1 1
- w + (1 - - )Yo = u E X.
r r

Since h is convex,
1 1

h(u) ~ -h(w) +(1- - )h(yo) < h(yo),
r r

a contradiction. Therefore, the conclusion holds.
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REMARK. In Corollary 2.2, the set K is actually equal to the set

f{/ == {y EX: hey) ::; hex) for all x E hey)}.

55

In fact, we have K' C K clearly. Conversely, if h(y) ::; h(x) for all
x E L, then it holds for all x E h(y). This shows K c K'.
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