A REMARK ON THE CLIFFORD INDEX AND HIGHER ORDER CLIFFORD INDICES*

E. Ballico and C. Keem

1. Introduction

In $[\mathrm{KKM}]$ it was seen that a linear series $g_{e+2 r}^{r}$ computing the Clifford index ϵ of an algebraic curve C is birationally very ample if $r \geq 3$ and $e \geq 3$. The purpose of this present note is to make further observations along the same lines. We also introduce the notion of higher order Clifford indices and make a few remarks on it.

We first fix some basic terminology and notations. C always denote a smooth irreducible projective curve of genus $g \geq 4$. A g_{d}^{r} on C is a lincar series of degree d and (projective) dimension r on C.
For a line bundle L or a complete g_{d}^{r} on C, we define the Clifford index Cliff(L) of L by

$$
\operatorname{Cliff}(L)=\operatorname{Cliff}\left(g_{d}^{r}\right)=d-2 r=\operatorname{deg} L-2 h^{0}(C, L)+2 .
$$

The Clifford index e of C is defined to be the non-negative integer

$$
e:=\operatorname{Min}\left\{\operatorname{Cliff}(L) \mid L \in \operatorname{Pic}(C), h^{0}(C, L) \geq 2 \text { and } h^{1}(C, L) \geq 2\right\} .
$$

We say that a line bundle L (or a complete g_{d}^{r}) on C contributes to the Clifford index if $h^{0}(C, L) \geq 2$ and $h^{1}(C, L) \geq 2(r \geq 1$ and $g-d+r-1 \geq$ 1). We say that $L=g_{d}^{r}$ on C computes the Clifford index of C if L contributes to the Clifford index and $d-2 r=e$; in this case $L=g_{d}^{r}$ is obviously base-point-free.

Throughout we work over the field of complex numbers.

[^0]
2. Birationally very ample linear series

We start by giving a complement (the case $r=2$) to [KKM].
Proposition 2.1. Let a g_{d}^{2} on C compute the Clifford index e of C. Then g_{d}^{2} is birationally very ample unless C is a $2: 1$ covering of a smooth plane curve $M \subseteq \mathbf{P}^{2}$, degree $(M)=e+4 / 2$.

Proof. Assume that $|D|=g_{d}^{2}=g_{\mathrm{e}+4}^{2}$ gives a $k: 1$ covering π of a plane curve $M, k \geq 2$. Fix $p \in M$, let t be its multiplicity. Set $E:=\pi^{*}(p)$. Then $|D-E|$ is a base-point-free $g_{e+4-t k}^{1}$. Then by definition of the Clifford index, we must have $k=2$ and $t=1$.

PROPOSITION 2.2. Let $|D|=g_{2 r+e+1}^{r}, r \geq 3$, be a special linear series without base points on a curve C with Clifford index $e \geq 1$ such that $r(K-D) \geq 1$. Then $|D|$ is birationally very ample.

Proof. Assume that $|D|$ is not birationally very ample. Then $|D|$ defines a morphism $C \rightarrow \mathbf{P}^{r}$ of degree $m \geq 2$ onto a curve C^{\prime} in \mathbf{P}^{r} of degree $d^{\prime}=\frac{2 r+e+1}{n}$. We note that the induced complete linear series $g_{d^{\prime}}^{r}$ on C^{\prime} is very ample since otherwise C^{\prime} would admit a $g_{d^{\prime}-2}^{r-1}$ whence there were a $g_{m\left(d^{\prime}-2\right)}^{r-1}$ on C for which $m\left(d^{\prime}-2\right)-2(r-1)=e-2 m+3<e$, a contradiction. Thus C^{\prime} is a smooth non-degenerate linearly normal curve of degree d^{\prime} in \mathbf{P}^{r}. In particular $d^{\prime} \geq r$.

Let $d^{\prime} \geq r+2$. Then by the fact that any reduced irreducible and nondegenerate curve of degree at least $r+2$ in $\mathbf{p}^{r}, r \geq 3$, has an r-secant-($r-2$)-plane, we get a $g_{d^{\prime}-r}^{1}$ on C^{\prime} inducing a $g_{m\left(d^{\prime}-r\right)}^{1}$ on C. But $m\left(d^{\prime}-r\right)-2=e-1-r(m-2)<e$, a contradiction. Thus C^{\prime} in \mathbf{P}^{r} is either a rational curve of degree r or an elliptic curve of degree $r+1$. If C^{\prime} is rational, C has a g_{m}^{1} and we have

$$
m-2=\frac{e+2 r+1}{r}-2=\frac{e+1}{r} \geq e
$$

which is impossible. If C^{\prime} is elliptic then C has a $g_{2 m}^{1}$, and we have

$$
2 m-2=2 \frac{e+2 r+1}{r+1}-2 \geq e
$$

which is only possible for $m=2$ and $e=1$.

In particular C must be a 2 -sheeted cover of an elliptic curve. On the other hand, if $e=1$ then C is either a smooth plane quintic or a trigonal curve. Since a smooth plane quintic cannot be elliptic-hyperelliptic, C must be trigonal. Because C also has a g_{4}^{1}, which is a pull-back of a g_{2}^{1} on C^{\prime}, we have $g(C) \leq(3-1) \cdot(4-1)=6$ by the Severi's inequality. By Clifford's theorem, we have

$$
1 \leq r(K-D) \leq \frac{2 g-2-(2 r+2)}{2}-1=g-r-3 \leq 3-r
$$

which is contradictory to $r \geq 3$.
We take one step further to prove the following similar result.
Proposition 2.3. Let $|D|=g_{2 r+e+2}^{r}, r \geq 3$ be a complete linear series without base point on a curve C with Clifford index $e \geq 1$ such that $r(K-D) \geq 1$. Then $|D|$ is birationally very ample unless C is one of the following type:
(I) C is a triple cover of a curve of genus $g^{\prime}=0$ or 1 .
(II) C is a double cover of a curve of genus $g^{\prime}=2,3,4,5$ or 10 .

Proof. Assume that $|D|$ is not birationally very ample. Then $|D|$ defines a morphism $C \rightarrow \mathrm{P}^{r}$ of degree $m \geq 2$ onto a curve C^{r} in \mathbf{P}^{r} of degree $d^{\prime}=\frac{2 r+e+2}{m}$.
(a) We first consider the case $m \geq 3$:
(i) If $d^{\prime} \geq r+2$, there is a r-secant- $(r-2)$-plane to C^{\prime} which induces a $g_{d^{\prime}-r}^{1}$ on C^{\prime} hence a $g_{m\left(d^{\prime}-r\right)}^{1}$ on C. Then $m\left(d^{\prime}-\right.$ $r)-2=\epsilon-(m-2) r<\epsilon$, a contradiction.
(ii) In case $m \geq 3$ and $d^{\prime}=r, C$ has a g_{m}^{1} and $m-2=\frac{e+2}{r} \geq e$, which is only possible for $m=3, r=3$ and $e=1$; in other words, C is trigonal.
(iii) In case $m \geq 3$ and $d^{\prime}=r+1$ with C^{\prime} an elliptic curve, C has a $g_{2 m}^{1}$ and hence $2 m-2=2 \frac{e+2 r+2}{r+1}-2 \geq e$, which is only possible for $e=4, m=3$ and $r=3$; i.e. C is a triple cover of an elliptic curve.
(b) For the case $m=2, C^{\prime}$ is birational to a curve $C^{\prime \prime}$ in \mathbf{P}^{3} of degree $\frac{e}{2}+4$ with a complete $g_{\frac{e}{2}+4}^{3}$ by projecting from $(r-3)$-general points on C^{\prime} in P^{r}. We then note the fact that $C^{\prime \prime}$ cannot have a

4 -secant line; if there were a 4 -secant line on $C^{\prime \prime}$, there would be a $g_{\frac{c}{2}}^{1}$ on $C^{\prime \prime}$ hence a g_{e}^{1} on C, which is a contradiction. By the same computation which was carried out in $[\mathrm{M}]$ (lemma 2), we deduce that $\left(e, g^{\prime}\right)=\left(e, g\left(C^{\prime \prime}\right)\right)=(2,2),(4,4),(2,1),(4,3),(6,5)$ or $(10,10)$. But the case $\left(e, g^{\prime}\right)=(2,1)$ does not occur; if this were the case, then $g_{2 r+4}^{r}$ on C is the pull-back of a g_{r+2}^{r} on C^{\prime} which is not complete on an elliptic curve C^{\prime} or $C^{\prime \prime}$.

Remark 2.4. One can easily see that if C is one of the curve described in the statement of the Proposition (2.3), non birationally very ample $g_{2 r+e+2}^{r}$ indeed occur on C just by considering the pull-backs of the appropriate $g_{d^{\prime}}^{r}$'s on the base curve C^{\prime}.

We generalize (2.2) and (2.3) in the following theorem.
Theorem 2.5. Let $|D|=g_{2 r+e+k}^{r}, r \geq 3, k \geq 0$ be a special linear series without base point on a curve C with Clifford index e such that $r(K-D) \geq 1$. If $r \geq 2 k+3$ then $|D|$ is either birationally very ample or $2: 1$ to a curve of genus $\frac{e+k}{2}$; the last possibility does not occur if $e \geq k+3$.

Proof. Assume that $|D|$ is birationally very ample. Then $|D|$ defines a morphism $C \rightarrow \mathbf{P}^{r}$ of degree $m \geq 2$ onto a curve C^{\prime} in \mathbf{P}^{r} of degree $d^{\prime}=\frac{2 r+e+k}{m}$ and the induced linear series $g_{d^{\prime}}^{r}$ on C^{\prime} gives rise to a $g_{d^{\prime}-(r-1)}^{1}$ by taking off $(r-1)$-general points. Then this in turn induces a $g_{2 r+e+k-m(r-1)}^{1}$ on C whose Clifford index is at most $2 r+e+k-m(r-$ 1) $-2=(2-m)(r-1)+e+k$. But if $m \geq 3,(2-m)(r-1)+e+k<e$, which is a contradiction.

For the case $m=2$, we consider the following two cases.
(i) The complete hyperplane series $\left|D^{\prime}\right|=g_{r+\frac{e+k}{2}}^{r}$ on C^{\prime} is special: In this case we take off $(r-1)$-general points of C^{\prime} from the hyperplane series $\left|D^{\prime}\right|$ and then pull it back to C, to get at least a $(r-1)$-dimensional family of g_{2+e+k}^{1} 's (possibly incomplete) on C. Thus for some $a \geq 1$, there exists at least a $(r-1)-2(a-1)=(r-1)-\operatorname{dim} \mathbf{G}(1, a)$ dimensional family of complete g_{2+e+k}^{a} 's on C. In other words, we have

$$
\operatorname{dim} W_{2+e+k}^{a}(C) \geq(r-1)-2(a-1)
$$

and hence

$$
\operatorname{dim} W_{2+e+k-(a-1)}^{1}(C) \geq(r-1)-2(a-1)+(a-1)=r-a
$$

On the other hand, by applying the basic inequality about the excess linear series (see [FHL]) to the above inequality and by hypothesis $r \geq 2 k+3, \operatorname{dim} W_{e+1}^{1}(C) \geq(r-a)-2(k-a+2) \geq 0$ which is a contradiction.
(ii) If $\left|D^{\prime}\right|$ on C^{\prime} is non-special, then $g^{\prime}=$ genus of $C^{\prime}=\frac{e+k}{2}$. By the existence of a pencil of degree

$$
d^{\prime \prime} \leq\left[\frac{g^{\prime}+3}{2}\right] \leq \frac{e+k+6}{4}
$$

on C^{\prime}, there exists a pencil of degree at most $\frac{e+k+6}{2}$ on C, hence $\frac{e+k+6}{2}-2 \geq \epsilon$.

3. Higher order Clifford indices

Given a curve C with Clifford index e, set $e_{1}:=e$. For each $j \in \mathbf{N}$, define $T(j)=\{|D|: 0<\operatorname{deg}(D)<2 g-2,|D|$ and $|K-D|$ are base-point-free and Cliff $(D)=j\}$. Let $J=\{j \in \mathbf{N}: T(j) \neq \phi\}$. By definition of the Clifford index, $J \neq \phi$ and $e=\min (J)$. For each $j \in J$, we call $|D| \in T(j)$ an admissible linear series. Set $e_{2}:=\min (J \backslash\{e\})$ if $J \neq\{e\}$. In general if we have defined e_{1}, \cdots, e_{k} and $J \neq\left\{e_{1}, \ldots, e_{k}\right\}$, let $e_{k+1}=\min \left(J \backslash\left\{e_{1}, \ldots, e_{k}\right\}\right)$. These integers are called higher order Clifford indices of C, e_{k} being the k-th Clifford index of C. We call J the Clifford set of C and its cardinality is naturally an invariant of C.

Remark 3.1. (i) For each $e_{j} \in J$, let $r_{j}=\min \left\{r_{j}:|D|=g_{d_{j}}^{r_{j}} \in\right.$ $\left.T\left(e_{j}\right)\right\}$. If $g_{d_{j}}^{r_{j}}$ is birational for some $j \geq 2$ with $r_{j} \geq 3$, this condition gives rather strong restrictions on the corresponding map; e.g. every $(2 s+2)$-secant s-plane $\left(0 \leq s \leq r_{j}-2\right)$ must be at leat a $2 s+2+\left(e_{j}-\right.$ e_{j-1})-secant.
(ii) If $e_{2}=\epsilon+1$, then every $|D| \in T\left(e_{2}\right)$ is birationally very ample by Proposition (2.2).

Example 3.2. If C has second Clifford dimension at least 2, i.e. $r_{2}>1$, then an admissible $|D|=g_{2 r_{2}+e_{2}}^{r_{2}}$ is birationally very ample unless C is a $e_{2}-e+2$ sheeted cover of a smooth plane curve of degree $\frac{e_{2}+4}{e_{2}-e+2}$ and $r_{2}=2$. In particular, if C is a $e_{2}-e+2$ sheeted cover of a smooth conic, then $e_{2}=2 e$ and $|D|$ is a double of a pencil g_{e+2}^{1} which computes the Clifford index.

Proof. Let's assume that the map h induced by $|D|$ has degree $k>1$. Then $\operatorname{deg} C^{\prime}=\operatorname{deg} h(C)=\frac{e_{2}+2 r_{2}}{k}$. Fix a general $p \in C^{\prime}$ and set $E=h^{*}(p)$. By construction $|D-E|$ is a base-point-free $g_{2 r_{2}+e_{2}-k}^{r_{2}-1}$ and is admissible; we note that no point outside E can be a base point of $|K-D+E|$ since $|K-D|$ has no base point. Then for any $Q \in$ $\operatorname{Supp}(E), h^{0}(D-E+Q)=h^{0}(D-E)$ by construction. Furthermore $\operatorname{Cliff}(D-E)=e_{2}-k+2$ and by the minimality of $r_{2}, k>2$. Since $\operatorname{Cliff}(D-E)<\operatorname{Cliff}(D)$, we must have $\operatorname{Cliff}(D-E)=e_{2}-k+2=e$. We now consider the following three cases:
(i) Suppose that $r_{2} \geq 4$. Since $|D-E|$ computes the Clifford index, $|D-E|$ is birationally very ample by Theorem 1 of [KKM]. On the other hand $|D-E|$ induces a map of degree at least k by our construction, whence a contradiction.
(ii) If $r_{2}=3,|D-E|=g_{6+e_{2}-k}^{2}=g_{e+4}^{2}$. But this cannot happen either since it would induce a $g_{e+4-k^{\prime}}^{1}\left(k^{\prime} \geq 3\right)$ on C, which is a pull-back of a pencil $g_{\frac{e+4}{k^{\prime}}-1}^{1}$ on the image curve of the map given by $|D-E|$.
(iii) If $r_{2}=2, C^{\prime}$ must be smooth since otherwise C would have $g_{e_{2}+4-t k}^{1}$ with $t>1$. In case $\operatorname{deg} C^{\prime}=2$, we have $e_{2}=2 e$. Furthermore in this case $|D|$ is a double of a pencil g_{e+2}^{1} on C which computes the Clifford index.

References

[ELMS] Eisenbud, D., Lange, H., Martens, G. and Schreyer, F., The Clifford dimension of a projective curve, Compositio Math. 72(1989), 173-204.
[FHL] Fulton, W., Harris, J. and Lazarsfeld, R., Excess linear series on an algebraic curve, Proc. Amer. Math. Soc. 92(1984), 320-322.
[KKM] Keem, C., Kim, S. and Martens, G., On a resuli of Farkas, J. reine angew. Math., 405(1990), 112-116.
[M] Martens, G., Über den Clifford-Index algebraischer Kurven, J. reine angew. Math., 336(1982), 83-90.

Department of Mathematics
University of Trento
38050 Povo (TN), Italy

Department of Mathematics
Seoul National University
Seoul 151-742, Korea

[^0]: Received February 7, 1990.

 * During the preparation of this work, both authors were almost fully supported by the Max-Planck-Institut für Mathematik. The second author is grateful to KOSEF for the travel grant to the MPI.

