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A REMARK ON THE CLIFFORD INDEX AND

HIGHER ORDER CLIFFORD INDICES·

E. BALLICO AND C. KEEM

1. Introduction

In [KK1>.1] it was seen that a linear series g;+2r computing the Clif­
ford index e of an algebraic curve C is birationally very ample if r 2: 3
and e 2: 3. The purpose of this present note is to make further obser­
vations along the same lines. We also introduce the notion of higher
order Clifford indices and make a few remarks on it.

Vve first fix some basic terminology and notations. C always denote
a smooth irreducible projective curve of genus 9 2: 4. A gd on C is a
linear series of degree d and (projective) dimension r on C.
For a line bundle L or a complete g;j on C, we define the Clifford index
Cliff( L) of L by

Clift'( L) = Cliff(gd) == d - 2r = deg L - 2ho(C, L) + 2.

The Clifford index e of C is defined to be the non-negative integer

e := Min{Cliff(L) ILE Pic(C), hO(C,L) 2: 2 and hI(C,L) 2: 2}.

We say that a line bundle L (or a complete gd) on C contribute.!J to the
Clifford inclex if hOt C, L) 2: 2 and hI (C, L) 2: 2 (r 2: 1 and g-d+r-l 2:
1). We say that L = gd on C computes the Clifford index of C if L
contributes to the Clifford index and d - 2r = e ; in this case L = g:i
is obviously base-point-free.

Throughout we work over the field of complex numbers.
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2. Birationally very ample linear series

We start by giving a complement (the case r = 2) to [KKM].

PROPOSITION 2.1. Let a 93 on C compute tbe Cliiford index e of
C. Then 93 is birationa1ly very ample unless C is a 2:1 covering of a
smootb plane curve M ~ p2, degree(M) = e + 4/2.

Proof. Assume that IDI = 93 = 9;+4 gives a k : 1 covering 1r of
a plane curve M, k ? 2. Fix p E M, let t be its multiplicity. Set
E := 1r*(p), Then ID - El is a base-point-free 9~+4-tk' Then by
definition of the Clifford index, we must have k = 2 and t = 1.

PROPOSITION 2.2. Let IDI = 92r±e±1' r ? 3, be a special linear
series without base points on a curve C with Cliiford index e ? 1 such
that r(K - D) ? 1. Tben IDI is birationally very ample.

Proof. Assume that IDI is not birationally very ample. Then IDI
defines amorphism C -+ pr of degree m ? 2 onto a curve C' in pr of
degree d' = 2r±,:±1. We note that the induced complete linear series

9d' on C' is very ample since otherwise C' would admit a 9~;-!2 whence

there were a9~(}'_2) on C for which m(d'-2)-2(r-1) = e-2m+3 < e,
a contradiction. Thus C' is a smooth non-degenerate linearly normal
curve of degree d' in pr. In particular d' ? r.

Let d' ? r + 2. Then by the fact that any reduced irreducible and
nondegenerate curve of degree at least r + 2 in pr, r ? 3, has an
r-secant-(r - 2)-plane, we get a 9~'-r on C' inducing a 9:n(d'-r) on C.
But m(d' - r) - 2 = e - 1 - r(m - 2) < e, a contradiction. Thus C' in
pr is either a rational curve of degree r or an elliptic curve of degree
r + 1. If C' is rational, C has a 9:n and we have

m _ 2 = e + 2r +1 _ 2 = e + 1 > e
r r -

which is impossible. If C' is elliptic then C has a 9~m' and we have

2m - 2 = 2 e + 2r + 1 _ 2 > e
r+1 -

which is only possible for m = 2 and e = 1.
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In particular C must be a 2-sheeted cover of an elliptic curve. On the
other hand, if e = 1 then C is either a smooth plane quintic or a trigonal
curve. Since a smooth plane quintic cannot be elliptic-hyperelliptic, C
must be trigonal. Because C also has a gl, which is a pull-back of a g~

on C', we have g( C) S; (3 - 1) . (4 - 1) = 6 by the Severi's inequality.
By Clifford's theorem, we have

. 2g-2-(2r+2)
1 < r(1\ - D) < - 1 = 9 - r - 3 < 3 - r- - 2 -

which is contradictory to r 2: 3.

'Ve take one step further to prove the following similar result.

PROPOSITION 2.3. Let IDI = g2r+e+2' r 2:: 3 be a complete linear
series without ba.<;e point on a curve C with Clifford index e 2: 1 such
that r(I": - D) 2:: 1. Tllen IDI is birationa1ly very ample unless C is
one of the following type:

(I) C is a triple cover of a curve of genus g' = 0 or 1.
(ll) C is a double cover of a curve of genus g' = 2,3,4,5 or 10.

Proof. Assume that IDI is not birationally very ample. Then IDI
defines amorphism C ~ pr of degree m 2: 2 onto a curve C' in pr of
degree d' = 2r+e+2.

III

(a) We first consider the case m 2: 3:

(i) If d' 2: 7' + 2, there is a r-secant-(r - 2)-plane to C' which
induces a ga'-r on C' hence a g~(dl-r) on C. Then med' ­
r) - 2 = e - (m - 2)r < e, a contradiction.

(ii) In case m 2: 3 and d' = r, C has a g!n and m - 2 = et2 2:: e,
which is only possible for m = 3, r = 3 and e = 1; in other
words, C is trigonal.

(iii) In case m 2: 3 and d' = r + 1 with C' an elliptic curve, C has
a g~m and hence 2m - 2 = 2 e=t:;t2

- 2 2: e, which is only
possible for e = 4, m = 3 and r = 3 ; i.e. C is a triple cover of
an elliptic curve.

(b) For the case m = 2, C' is birational to a curve C" in p3 of
degree ~ + 4 with a complete g1+4 by projecting from (r - 3)-general
points on C' in pr. 'Ve then note the fact that C" cannot have a
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4-secant line; if there were a 4-secant line on C", there would be a
gl on C" hence a g~ on C, which is a contradiction. By the same

2

computation which was carried out in [M] (lemma 2), we deduce that
(e,g') = (e,g(C")) = (2,2),(4,4),(2,1),(4,3),(6,5) or (10,10). But
the case (e, g') = (2,1) does not occur; if this were the case, then g2rH

. on C is the pull-back of a g~+2 on C' which is not complete on an
elliptic curve C' or C".

REMARK 2.4. One can easily see that if C is one of the curve de­
scribed in the statement of the Proposition (2.3), non birationally very
ample g~r±e±2 indeed occur on C just by considering the pull-backs of
the appropriate 9d"S on the base curve C'.

We generalize (2.2) and (2.3) in the following theorem.

THEOREM 2.5. Let IDI = g;r±e±k' r ;::: 3, k;::: 0 be a specia1linear
series without base point on a curve C with Clifford index e such that
r(K - D) ;::: 1. If r ;::: 2k + 3 then IDj is either birationally vel)' ample
or 2:1 to a curve of genus etk ; the last possibility does not occur if
e;::: k + 3.

Proof. Assume that IDI is birationally very ample. Then IDI defines
amorphism C ~ pr of degree m ;::: 2 onto a curve C' in pr of degree
d' = 2r±":;±k and the induced linear series gd' on C' gives rise to a
ga'-(r-l) by taking off (r-l)-general points. Then this in turn induces

a g~r±e±k-m(r-l) on C whose Clifford index is at most 2r+e+k-m(r­
1) -2 = (2-m)(7> -1)+e+ k. But if m;::: 3, (2-m)(r -1)+e+k < e,
which is a contradiction.

For the case m = 2, we consider the following two cases.

(i) The complete hyperplane series ID'I = gr .!.±! on C' is special: In
r± 2

this case we take off (r -1)-general points of C' from the hyperplane se-
ries ID'I and then pull it back to C, to get at least a (r -1)-dimensional
family of g~±e±k's (possibly incomplete) on C. Thus for some a ;::: 1,
there exists at least a (r - 1) - 2(a -1) = (r -1) - dimG(I, a) dimen­
sional family of complete g2±e±k'S on C. In other words, we have

dim W;±e+k(C);::: (r -1) - 2(a -1)
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and hence

dim Wi+e+k-(a-l)(C) ~ (r -1) - 2(a -1) + (a -1) = r - a.
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On the other hand, by applying the basic inequality about the excess
linear series (see [FHLJ) to the above inequality and by hypothesis
r ~ 2k + 3, dim W;±l (C) ~ (r - a) - 2(k - a + 2) ~ 0 which is a
contradiction.

(ii) If ID'I on C' is non-special, then g' = genus of C' = et:. By
the existence of a pencil of degree

d" < [9'+3] < e+k+6
- 2 - 4

on C', there exist s a pencil of degree at most e±~±6 on C, hence
.til±& _.) >2 ~ _ e.

3. Higher order Clifford indices

Given a curve C with Clifford index e, set el ;= e. For each j EN,
define TU) = {IDI : 0 < deg(D) < 2g - 2, IDI and IK - DI are
base-point-free and Cliff(D) = n. Let J = {j EN; TU) i= 4>}. By
definition of the Clifford index, J i= <P and e = min( J). For each j E J,
we call IDIE T(J) an admissible linear series. Set ez := min(J\ {e}) if
J =I {e}. In general if we have defined el, ... ,ek and J =I {el,' .. , ek},

let ek±l = min( J\ {Cl, ... ,cd). These integers are called higher order
Clifford indices of C, ek being the k-th Clifford index of C. We call J
the Clifford set of C and its cardinality is naturally an invariant of C.

REMARK 3.1. (i) For each ej E J, let rj = min{rj : IDI = g~j E
J

T( ej)}. If 9~~ is birational for some j ~ 2 with r j ~ 3, this condition
gives rather strong restrictions on the corresponding map; e.g. every
(2s +2)-secant s-plane (0 :; s :; rj - 2) must be at leat a 2s +2 + (Cj ­

Cj -1 )-secant.
(ii) If e2 = e + 1, then every IDI E T(ez) is birationally very ample

by Proposition (2.2).
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EXAMPLE 3.2. IT C has second Clifford dimension at least 2, i.e.
rz > 1, then an admissible IDI = g;;2+e2 is birationally very ample
unless C is a ez - e +2 sheeted cover of a smooth plane curve of degree
e:':'~~z and rz = 2. In particular, if C is a ez - e + 2 sheeted cover of a
smooth conic, then ez = 2e and IDI is a double of a pencil g~+z which
computes the Clifford index.

Proof. Let's assume that the map h induced by IDI has degree k > l.
Then deg C' = deg h(C) = e2"\zr2. Fix a general p E C' and set

E = h*(p). By construction ID - El is a base-point-free g;;-;;e2- k and
is admissible; we note that no point outside E can be a base point
of !K - D + El since IK - DI has no base point. Then for any Q E
Supp(E), hoeD - E + Q) = hoeD - E) by construction. Furthermore
Cliff(D - E) = ez - k + 2 and by the minimality of rz, k > 2. Since
Cliff(D - E) < Cliff(D), we must have Cliff(D - E) = ez - k +2 = e.
We now consider the following three cases:

(i) Suppose that rz ~ 4. Since ID - El computes the Clifford
index, ID - El is birationally very ample by Theorem 1 of
[KKMJ. On the other hand ID - El induces a map of degree
at least k by our construction, whence a contradiction.

(ii) IT rz = 3, ID - El = g~+e2-k = g:+4' But this cannot happen
either since it would induce a g~+4-k' (k' ~ 3) on C, which is
a pull-back of a pencil g~-l on the image curve of the map

given by ID - El.
(iii) IT TZ = 2, C' must be smooth since otherwise C would have

g~2+4-tk with t > 1. In case deg C' = 2, we have e2 = 2e.
Furthermore in this case IDI is a double of a pencil g:+2 on C
which computes the Clifford index.
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