A REMARK ON THE CLIFFORD INDEX AND HIGHER ORDER CLIFFORD INDICES*

E. BALLICO AND C. KEEM

1. Introduction

In [KKM] it was seen that a linear series g_{e+2r}^r computing the Clifford index e of an algebraic curve C is birationally very ample if $r \geq 3$ and $e \geq 3$. The purpose of this present note is to make further observations along the same lines. We also introduce the notion of higher order Clifford indices and make a few remarks on it.

We first fix some basic terminology and notations. C always denote a smooth irreducible projective curve of genus $g \geq 4$. A g_d^r on C is a linear series of degree d and (projective) dimension r on C.

For a line bundle L or a complete g_d^r on C, we define the Clifford index Cliff(L) of L by

$$\operatorname{Cliff}(L) = \operatorname{Cliff}(g_d^r) = d - 2r = \deg L - 2h^0(C, L) + 2.$$

The Clifford index e of C is defined to be the non-negative integer

$$e := \text{Min}\{\text{Cliff}(L) \mid L \in \text{Pic}(C), h^0(C, L) \ge 2 \text{ and } h^1(C, L) \ge 2\}.$$

We say that a line bundle L (or a complete g_d^r) on C contributes to the Clifford index if $h^0(C, L) \geq 2$ and $h^1(C, L) \geq 2$ $(r \geq 1)$ and $g - d + r - 1 \geq 1$). We say that $L = g_d^r$ on C computes the Clifford index of C if L contributes to the Clifford index and d - 2r = e; in this case $L = g_d^r$ is obviously base-point-free.

Throughout we work over the field of complex numbers.

Received February 7, 1990.

^{*} During the preparation of this work, both authors were almost fully supported by the Max-Planck-Institut für Mathematik. The second author is grateful to KOSEF for the travel grant to the MPI.

2. Birationally very ample linear series

We start by giving a complement (the case r = 2) to [KKM].

PROPOSITION 2.1. Let a g_d^2 on C compute the Clifford index e of C. Then g_d^2 is birationally very ample unless C is a 2:1 covering of a smooth plane curve $M \subseteq \mathbf{P}^2$, degree(M) = e + 4/2.

Proof. Assume that $|D| = g_d^2 = g_{e+4}^2$ gives a k : 1 covering π of a plane curve $M, k \geq 2$. Fix $p \in M$, let t be its multiplicity. Set $E := \pi^*(p)$. Then |D - E| is a base-point-free g_{e+4-tk}^1 . Then by definition of the Clifford index, we must have k = 2 and t = 1.

PROPOSITION 2.2. Let $|D| = g_{2r+e+1}^r$, $r \geq 3$, be a special linear series without base points on a curve C with Clifford index $e \geq 1$ such that $r(K-D) \geq 1$. Then |D| is birationally very ample.

Proof. Assume that |D| is not birationally very ample. Then |D| defines a morphism $C \to \mathbf{P}^r$ of degree $m \geq 2$ onto a curve C' in \mathbf{P}^r of degree $d' = \frac{2r+e+1}{n}$. We note that the induced complete linear series $g^r_{d'}$ on C' is very ample since otherwise C' would admit a $g^{r-1}_{d'-2}$ whence there were a $g^{r-1}_{m(d'-2)}$ on C for which m(d'-2)-2(r-1)=e-2m+3 < e, a contradiction. Thus C' is a smooth non-degenerate linearly normal curve of degree d' in \mathbf{P}^r . In particular $d' \geq r$.

Let $d' \geq r+2$. Then by the fact that any reduced irreducible and nondegenerate curve of degree at least r+2 in \mathbf{P}^r , $r \geq 3$, has an r-secant-(r-2)-plane, we get a $g^1_{d'-r}$ on C' inducing a $g^1_{m(d'-r)}$ on C. But m(d'-r)-2=e-1-r(m-2)< e, a contradiction. Thus C' in \mathbf{P}^r is either a rational curve of degree r or an elliptic curve of degree r+1. If C' is rational, C has a g^1_m and we have

$$m-2 = \frac{e+2r+1}{r} - 2 = \frac{e+1}{r} \ge e$$

which is impossible. If C' is elliptic then C has a g_{2m}^1 , and we have

$$2m - 2 = 2\frac{e + 2r + 1}{r + 1} - 2 \ge e$$

which is only possible for m = 2 and e = 1.

In particular C must be a 2-sheeted cover of an elliptic curve. On the other hand, if e=1 then C is either a smooth plane quintic or a trigonal curve. Since a smooth plane quintic cannot be elliptic-hyperelliptic, C must be trigonal. Because C also has a g_4^1 , which is a pull-back of a g_2^1 on C', we have $g(C) \leq (3-1) \cdot (4-1) = 6$ by the Severi's inequality. By Clifford's theorem, we have

$$1 \le r(K - D) \le \frac{2g - 2 - (2r + 2)}{2} - 1 = g - r - 3 \le 3 - r$$

which is contradictory to $r \geq 3$.

We take one step further to prove the following similar result.

PROPOSITION 2.3. Let $|D| = g_{2r+e+2}^r$, $r \ge 3$ be a complete linear series without base point on a curve C with Clifford index $e \ge 1$ such that $r(K-D) \ge 1$. Then |D| is birationally very ample unless C is one of the following type:

- (I) C is a triple cover of a curve of genus q' = 0 or 1.
- (II) C is a double cover of a curve of genus g' = 2, 3, 4, 5 or 10.

Proof. Assume that |D| is not birationally very ample. Then |D| defines a morphism $C \to \mathbf{P}^r$ of degree $m \ge 2$ onto a curve C' in \mathbf{P}^r of degree $d' = \frac{2r + \epsilon + 2}{m}$.

- (a) We first consider the case $m \geq 3$:
 - (i) If $d' \geq r+2$, there is a r-secant-(r-2)-plane to C' which induces a $g_{d'-r}^1$ on C' hence a $g_{m(d'-r)}^1$ on C. Then $m(d'-r)-2=\epsilon-(m-2)r<\epsilon$, a contradiction.
- (ii) In case $m \ge 3$ and d' = r, C has a g_m^1 and $m 2 = \frac{e+2}{r} \ge e$, which is only possible for m = 3, r = 3 and e = 1; in other words, C is trigonal.
- (iii) In case $m \geq 3$ and d' = r + 1 with C' an elliptic curve, C has a g_{2m}^1 and hence $2m 2 = 2\frac{e+2r+2}{r+1} 2 \geq e$, which is only possible for e = 4, m = 3 and r = 3; i.e. C is a triple cover of an elliptic curve.
- (b) For the case m=2, C' is birational to a curve C'' in \mathbf{P}^3 of degree $\frac{\epsilon}{2}+4$ with a complete $g_{\frac{\epsilon}{2}+4}^3$ by projecting from (r-3)-general points on C' in \mathbf{P}^r . We then note the fact that C'' cannot have a

4-secant line; if there were a 4-secant line on C'', there would be a $g_{\frac{1}{2}}^1$ on C'' hence a g_e^1 on C, which is a contradiction. By the same computation which was carried out in [M] (lemma 2), we deduce that (e,g')=(e,g(C''))=(2,2),(4,4),(2,1),(4,3),(6,5) or (10,10). But the case (e,g')=(2,1) does not occur; if this were the case, then g_{2r+4}^r on C is the pull-back of a g_{r+2}^r on C' which is not complete on an elliptic curve C' or C''.

REMARK 2.4. One can easily see that if C is one of the curve described in the statement of the Proposition (2.3), non birationally very ample g_{2r+e+2}^r indeed occur on C just by considering the pull-backs of the appropriate $g_{d'}^r$'s on the base curve C'.

We generalize (2.2) and (2.3) in the following theorem.

THEOREM 2.5. Let $|D| = g^r_{2r+e+k}$, $r \geq 3$, $k \geq 0$ be a special linear series without base point on a curve C with Clifford index e such that $r(K-D) \geq 1$. If $r \geq 2k+3$ then |D| is either birationally very ample or 2:1 to a curve of genus $\frac{e+k}{2}$; the last possibility does not occur if $e \geq k+3$.

Proof. Assume that |D| is birationally very ample. Then |D| defines a morphism $C \to \mathbf{P}^r$ of degree $m \geq 2$ onto a curve C' in \mathbf{P}^r of degree $d' = \frac{2r+e+k}{m}$ and the induced linear series $g_{d'}^r$ on C' gives rise to a $g_{d'-(r-1)}^1$ by taking off (r-1)-general points. Then this in turn induces a $g_{2r+e+k-m(r-1)}^1$ on C whose Clifford index is at most 2r+e+k-m(r-1)-2=(2-m)(r-1)+e+k. But if $m \geq 3$, (2-m)(r-1)+e+k < e, which is a contradiction.

For the case m=2, we consider the following two cases.

(i) The complete hyperplane series $|D'| = g_{r+\frac{e+k}{2}}^r$ on C' is special: In this case we take off (r-1)-general points of C' from the hyperplane series |D'| and then pull it back to C, to get at least a (r-1)-dimensional family of g_{2+e+k}^1 's (possibly incomplete) on C. Thus for some $a \ge 1$, there exists at least a $(r-1)-2(a-1)=(r-1)-\dim \mathbf{G}(1,a)$ dimensional family of complete g_{2+e+k}^a 's on C. In other words, we have

$$\dim W_{2+e+k}^a(C) \ge (r-1) - 2(a-1)$$

and hence

$$\dim W^1_{2+e+k-(a-1)}(C) \ge (r-1)-2(a-1)+(a-1)=r-a.$$

On the other hand, by applying the basic inequality about the excess linear series (see [FHL]) to the above inequality and by hypothesis $r \geq 2k+3$, dim $W^1_{e+1}(C) \geq (r-a)-2(k-a+2) \geq 0$ which is a contradiction.

(ii) If |D'| on C' is non-special, then $g' = \text{genus of } C' = \frac{e+k}{2}$. By the existence of a pencil of degree

$$d'' \le \left\lceil \frac{g'+3}{2} \right\rceil \le \frac{e+k+6}{4}$$

on C', there exists a pencil of degree at most $\frac{e+k+6}{2}$ on C, hence $\frac{e+k+6}{2}-2 \geq e$.

3. Higher order Clifford indices

Given a curve C with Clifford index e, set $e_1 := e$. For each $j \in \mathbb{N}$, define $T(j) = \{|D| : 0 < \deg(D) < 2g - 2, |D| \text{ and } |K - D| \text{ are base-point-free and Cliff}(D) = j\}$. Let $J = \{j \in \mathbb{N} : T(j) \neq \emptyset\}$. By definition of the Clifford index, $J \neq \emptyset$ and $e = \min(J)$. For each $j \in J$, we call $|D| \in T(j)$ an admissible linear series. Set $e_2 := \min(J \setminus \{e\})$ if $J \neq \{e\}$. In general if we have defined e_1, \dots, e_k and $J \neq \{e_1, \dots, e_k\}$, let $e_{k+1} = \min(J \setminus \{e_1, \dots, e_k\})$. These integers are called higher order Clifford indices of C, e_k being the k-th Clifford index of C. We call J the Clifford set of C and its cardinality is naturally an invariant of C.

REMARK 3.1. (i) For each $e_j \in J$, let $r_j = \min\{r_j : |D| = g_{d_j}^{r_j} \in T(e_j)\}$. If $g_{d_j}^{r_j}$ is birational for some $j \geq 2$ with $r_j \geq 3$, this condition gives rather strong restrictions on the corresponding map; e.g. every (2s+2)-secant s-plane $(0 \leq s \leq r_j-2)$ must be at leat a $2s+2+(e_j-e_{j-1})$ -secant.

(ii) If $e_2 = e + 1$, then every $|D| \in T(e_2)$ is birationally very ample by Proposition (2.2).

EXAMPLE 3.2. If C has second Clifford dimension at least 2, i.e. $r_2 > 1$, then an admissible $|D| = g_{2r_2+e_2}^{r_2}$ is birationally very ample unless C is a $e_2 - e + 2$ sheeted cover of a smooth plane curve of degree $\frac{e_2+4}{e_2-e+2}$ and $r_2 = 2$. In particular, if C is a $e_2 - e + 2$ sheeted cover of a smooth conic, then $e_2 = 2e$ and |D| is a double of a pencil g_{e+2}^1 which computes the Clifford index.

Proof. Let's assume that the map h induced by |D| has degree k > 1. Then $\deg C' = \deg h(C) = \frac{e_2 + 2r_2}{k}$. Fix a general $p \in C'$ and set $E = h^*(p)$. By construction |D - E| is a base-point-free $g_{2r_2 + e_2 - k}^{r_2 - 1}$ and is admissible; we note that no point outside E can be a base point of |K - D + E| since |K - D| has no base point. Then for any $Q \in \operatorname{Supp}(E)$, $h^0(D - E + Q) = h^0(D - E)$ by construction. Furthermore $\operatorname{Cliff}(D - E) = e_2 - k + 2$ and by the minimality of r_2 , k > 2. Since $\operatorname{Cliff}(D - E) < \operatorname{Cliff}(D)$, we must have $\operatorname{Cliff}(D - E) = e_2 - k + 2 = e$. We now consider the following three cases:

- (i) Suppose that $r_2 \geq 4$. Since |D E| computes the Clifford index, |D E| is birationally very ample by Theorem 1 of [KKM]. On the other hand |D E| induces a map of degree at least k by our construction, whence a contradiction.
- (ii) If $r_2 = 3$, $|D E| = g_{6+e_2-k}^2 = g_{e+4}^2$. But this cannot happen either since it would induce a $g_{e+4-k'}^1$ ($k' \ge 3$) on C, which is a pull-back of a pencil g_{e+4-1}^1 on the image curve of the map given by |D E|.
- (iii) If $r_2 = 2$, C' must be smooth since otherwise C would have $g_{e_2+4-tk}^1$ with t > 1. In case $\deg C' = 2$, we have $e_2 = 2e$. Furthermore in this case |D| is a double of a pencil g_{e+2}^1 on C which computes the Clifford index.

References

- [ELMS] Eisenbud, D., Lange, H., Martens, G. and Schreyer, F., The Clifford dimension of a projective curve, Compositio Math. 72(1989), 173-204.
- [FHL] Fulton, W., Harris, J. and Lazarsfeld, R., Excess linear series on an algebraic curve, Proc. Amer. Math. Soc. 92(1984), 320-322.
- [KKM] Keem, C., Kim, S. and Martens, G., On a result of Farkas, J. reine angew. Math., 405(1990), 112-116.

[M] Martens, G., Über den Clifford-Index algebraischer Kurven, J. reine angew. Math., 336(1982), 83-90.

Department of Mathematics University of Trento 38050 Povo (TN), Italy

Department of Mathematics Seoul National University Seoul 151-742, Korea