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SOCLE OF C-M LOCAL RINGS AND
STRONG F-REGULARITY

YoNGSU SHIN AND YOUNG Hyun CHO

0. Introduction

In [1], M. Hochster proved that if (R,m) is a regular local ring,
z1,-+- ,Zd is a regular system of parameters for R and if R C S, where
S is a module-finite R-algebra, then R is a direct summand of S if
and only if for every integer k, (z1---za)* ¢ (z¥*,...,25™)S. In
Theorem 3.3, we generalize the above theorem in the case when R is
a complete and reduced Noetherian Cohen-Macaulay (for short, C-M)
local ring and up generates the minimum nonzero ideal of R/I; for
every k. And in Proposition 2.7, we shall prove that if the elements
Y1,.--,Yn € R generate the socle of R/J;, then yyuy, ..., ynu: generate
the socle of R/Ji41, where Jet1 = (237, -+ ,z4™) and u¢ = =} - - - 7},
Using the Proposition 2.7, we prove that if (R, m) is F-rational and
Gorenstein, then R is strongly F-regular in Theorem 3.5.

1. Preliminaries and definitions

Throughout this paper, all rings are Noetherian and commutative
with 1 and positive characteristic p. We introduce the notion of the
tight closure of an ideal I in R. Let R® = R — U{P : P is a minimal
prime of R}.

DEFINITION 1.1. Let I C R be an ideal. If R is a ring with char-
acteristic p > 0, we say that z € R is in the tight closure, I*, of I,
if there exists ¢ € R® such that for all e > 0, cz?* € IP’l where
I = (39 : i € I) when ¢ = p*. I I = I*, we say that I is tightly
closed.
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REMARK 1.2. (a) If R is regular, then I = I* for all I. (ref., (3],
[4], [5], [6])-

(b) A Gorenstein local ring has the property that I = I* for all I
if and only if the ideal generated by a single system of parameters is
tightly closed. (ref. [3].)

DEFINITION 1.3. R is weakly F-regular if every ideal in R is tightly
closed. R is F-regular if R, is weakly F-regular for every p € Spec(R).

DEFINITION 1.4. R is F-rational if every ideal generated by a sys-
tem of parameters is tightly closed.

2. Socle of a C-M local rings

DEFINITION 2.1. Let R be a reduced Noetherian ring of positive
prime characteristic p such that R? is modulefinite over R. (Of
course, R7 is then module-finite over R for all g =p®). We say that R
as above is strongly F-regular if for every ¢ € R°, there exists ¢ = p°®
such that the R-linear map R — R* which sends 1 to ¢t splits as a
map of R-modules, i.e., if and only if Rc® C R splits over R.

REMARK 2.2 ([5] 3.1 THEOREM (D)). If R is strongly F-regular,
then R is F-regular.

DEFINITION-PROPOSITION 2.3 ({2] (1.1) DEFINITION-PROPOSITION).
A Noetherian local ring (R, m) is approzimately Gorenstein if it satis-
fies either of the following equivalent conditions:

(a) For every integer N > 0 there is an ideal I € m”" such that R/I
is Gorenstein.

(b) }1\*;‘01‘ every integer N > () there is an m-primary irreducible ideal
Icm”.

THEOREM 2.4 ([2] (1.6) THEOREM). If (R, m) is a complete and
reduced (or even an excellent and reduced) local ring with dimR > 1.
Then R is approximately Gorenstein if and only if the following two
conditions hold:

(a) m ¢ Ass(R), i.e., depthR > 1.

(b) If P € Ass(R) and dim R/P = 1, then (R/P) @ (R/P) is not
embeddable in R.
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DEFINITION 2.5. If (R, m) is a Noetherian local ring and ¢ is an
m-primary ideal, then the R-module R/q is of finite length. The socle
of R/q is the set of all residue classes ¥ € R/q that are annihilated by
m:

S(R/q) := {F € R/qlm -7 = 0}.

REMARK 2.6. (a) ([7] Proposition V1.3.17). Let (R,m) be a C-M
local ring and ai,--- ,aq be a system of parameters for R. Then the
number

r:=dimp/m(S(R/(a1,- - ,a4)))

is independent of the choice of the system of parameters a;,--- ,aq4.
(b) ([7] Definition VI1.3.18). If the number r = 1 in (a), then (R, m)
is a Gorenstein local ring.

PROPOSITION 2.7. Let (R,m) bea C-M local ring with dimension
d and let J = J; = (x4, -+ ,z4) be an ideal generated by a system

of parameters for R. If the elements y1,--- ,yn € R generate the
socle of R/ Jy, then yyus,- - - ,ypu¢ generate the socle of R/ Jiy1, where
Jepr = (2, -+ L 2itY) and up = 2% - - 2.

Proof. Case 1. dimR = 1.
e, : S(R/Rz:) — S(R/Rz?)

is an isomorphism, where S(*) is the socle of * and p., is the multi-
plication by z;.
1) pz, is injective; for
mr C 1R and rz; € (2}) = rz; = 23t, forsome t € R
= r = z;t.

It follows that p., is injective.
i) p,, is surjective; for
mr C (2?) and r ¢ (22) = 2,7 € mr C (23)
= r = ;i for some t € R;
for rm = z1tm C (z?)
= tm C (21).
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This means that ¢t € S(R/Rr;) and tz; = r = p,, is surjective. By
i) and ii) p,, is an isomorphism. Inductively, we can prove that

S(R/z1R) ~ S(R/z*"'R) and S(R/z'*'R) =< yz! >
Case 2. dimR =d > 2.
Let R = R/Rzq and let R = R/(z!*,--- ,25Y )R. Then R and R
are also C-M and

S(R/(z1,+ ,22)) —— S(R[(z1,-++,24-1)R)

l

S(R/(xt+l’. ’x:i+11,$d)) -— S(R/(zt+l, .. t+1)R)
‘S(R/(xd)é) — S(R/(a:t“)R)

l=

S(R/($t+1, : ,xcti-H))a

1~

le

where for every # € S(R/(z1,- - ,za-1)R), f(F) = rat- :cd €
S(R/(zit,--- 2T} )R) and for every #* € S(R/(za)R),g(F') = 'z} €
S(R/(z5*")R). Hence S(R/J) — S(R/Jy41) is an isomorphism. It
follows that if S(R/J1) =< §1,-+ ,§n >, then

S(R/($i+1v ’xcti+l)) =< YUty 0y Ynllt > .

REMARK 2.8. Let (R, m) be a Gorenstein local ring with dimension
d and let J = J; = (21, -+ ,z4) be an ideal generated by a system of
parameters for R. If an element y € R generates the socle of R/J;, then
yu: generates the socle of R/ Jt+1 by Proposition 2.7, where Ji41 =

(it 2! and w, = 2t - -~z
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3. Contracted ideals of complete and reduced local rings
and Strong F-regularity

LEMMA 3.1 ([1] LEMMA 1). Let R C S be rings and assume that S
is finitely presented as an R-module. Then R is a direct summand of S
if and only if for each maximal ideal m of R, R, is a direct summand
of S,,.

Moreover, if T is a faithfully flat R-algebra, then R is a direct sum-
mand of S if and only if T = R®pr T is a direct summand of S Qg T.

PROPOSITION 3.2 ([7] PrOPOSITION 10). If R C S are rings such
that R is a direct summand of S, then for each ideal I of R, ISNR = I.

Throughout the rest of this section (R, m) denotes a Noetherian C-

M local ring of positive prime characteristic p such that R? is module-
finite over R unless otherwise specified. Let dimR = d and 71, 22, ...,Z4
be a system of parameters for R. We denote that uz = :t:{c .- -:z:s.

By Theorem 2.4, if (R, m) is a complete and reduced (or even an ex-
cellent) local ring, then there must exist a sequence {Ix} of irreducible

m-primary ideals cofinal with the powers of m.

THEOREM 3.3. Let (R,m) be a complete and reduced Noetherian
C-M local ring with 1. Let z,,--- ,z4 be a system of parameters for
R and Iy, ux be as before. Assume that ur € R generate the minimum
nonzero ideal of R/Ix41 modulo Ix4, for every k. Let R C S, where S
is a module finite R-algebra. Then R is a direct summand of S if and
only if for every integer k > 0, ug ¢ Ix41S.

Proof. Let Ry = R/Ix. Then Rx = R/I; is Gorenstein and zero-
dimensional: let my = m/Ix. Then for every nonzero ideal J/Ixy in
Riy1, ug € J/Ir4y by given hypothesis. It follows that every ideal of
R strictly larger than I;41 contains ug.

Now, if R is a direct summand of S, then every ideal of R will
be contracted by Proposition 3.2. Since ur ¢ Ix+1R, we will have
ur ¢ Ir41S, which is precisely the condition asserted in Theorem 3.3.

To prove the converse, assume that ug ¢ Ixy1 S, for all k. Since the
ideals I are cofinal with the powers of m and R is complete,

(*) Hompg(S, R) = lim Homg(Sk, Rk)
k
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where S; = S/IxS. We also note the isomorphism
Homp(Sk, R) ~ Homg, (Sk, Rk).

Now, SN R = Ik, because if J = SN R, Ix C J, then ux € J,
this contradicts our hypothesis. Hence, the inclusion R < S induces
an inclusion Ry < Si for each k. Since Ri is a zero-dimensional
Gorenstein local ring, it is injective as an Ri-module, and it follows
that for each k, the inclusion Rp «» Sy splits, i.e., Ry is a direct
summand of Sx. For each k, let hxy : Homp(Si,Rr) — R by
h($) = #(1x) where 1x € R C Sk in the image of 1 € R C S, and let
h : Homg(S,R) — R by h(¢) = ¢(1). Then Hi = h;'(1) (respec-
tively, H = h~'(1)) is the set of splitting of Rx — Sk (respectively,
R — §) and the inverse limit relation (*) induces

(%) H = li‘_g_nHIp
k

Here H; (respectively, H) is a coset (or translate) of a submodule of
Hompg(S, Ri) (respectively, Homg(S, R)) and the maps are restricted
module homomorphisms. All we need to show to complete the proof
is that H # (). Since each R; is a direct summand of Si, each
H; # (). But an inverse limit of nonempty cosets in Artinian modules
is nonempty. To see this, note that for each k the decreasing sequence
of nonempty subcosets Im(H;4r — Hi) of Hi stabilizes, since their
lengths must stabilize. Denote this subcoset of Hy by Ej. Then the
Ey form a subsystem of nonempty subcosets and surjective maps so
that
Q# lim E; C H.
k

This completes the proof.

COROLLARY 3.4. Let (R, m) be a Gorenstein local ring. Let z1,--- ,
zd be a system of parameters for R. Assume that the image of y in
R/I, generates the socle S(R/I;) of R/I, where It = (z£,---,z%).
Let R C S, where S is a module finite R-algebra. Then R is a direct
summand of S if and only if for every integer k > 0,

yug & Ix41S.
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Proof. Since R is a Gorenstein local ring, {Ix} is a sequence of ir-
reducible m-primary ideals cofinal with the powers of m. Also, Ry =
R/I; is a zero-dimensional Gorenstein local ring. Let my = m/I.
Then Anng,m; is isomorphic to a single copy of R/m, and every
nonzero ideal of Ry contains Anng,mi. It is quite easy to see, in
fact, that Anng,mi is generated by the residue class modulo I; of
yac{"1 ‘e :1:,’;"1 by Remark 2.8. It follows that every ideal of R strictly
larger than Ii contains yzi=!...z5—1,

The rest of this proof is precisely the same as the proof of Theorem
3.3.

THEOREM 3.5. If (R,m) is F-rational and Gorenstein, then R is
strongly F'-regular.

Proof. Let z1,---24 be a system of parameters for R. Then, since
R is Gorenstein, I = {(zf,---,z%)} is a sequence of irreducible m-
primary ideals cofinal with the powers of m. Let the socle S(R/I) be

generated by y € R and ug = z¥ ... 25,

For every c € R, if yukc% € Irq1 R for some integer ¢ = p®,k > 0,
then yc% € LRY since qu,--- ,:c:q is also a regular sequence. But
if yc% € IIR% for all ¢ > 0, then y € I* = I, a contradiction. Thus
yc% ¢ I1R}v' for some ¢ > 0. Hence yukc% ¢ Ik.HR% for every k > 0.
It follows that Rcv C R+ splits over R by Corollary 3.4. Therefore, R
is strongly F-regular.

REMARK 3.6. It is not necessary to assume that S is an R-algebra.
Assume that Ruj and Ir are as in Theorem 3.3. Assume that ux €
R generate the minimum nonzero ideal of R/Ix modulo I; for every
k. Let E be a finitely generated R-module and e € E be such that
Ann(e) = (0). Then Re is a direct summand of E if and only if for
every integer k > 0, ure ¢ Ix41E. The proof of this result follows
precisely the lines of the proof Theorem 3.3. Hence we can obtain the
following Theorem 3.7.

THEOREM 3.7. Let (R,m) be a complete and reduced Noetherian
C-M local ring of positive prime characteristic p with 1, let z1,--- ,z4,
ur and Iy be as in Theorem 3.3. Assume that ur € R generate the
minimum nonzero ideal of R/Ixy1 modulo Ix41 for every k. Let E be
a finitely generated R-module and e € E be such that Ann(e) = (0).
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Then Re is a direct summand of E if and only if for every integer k > 0,
Uuge ¢ Ik+1 E.

COROLLARY 3.8. Let R,z1,--- ,Z4,ukr and Iy be as in Theorem 3.3
and R*¥ be module-finite. Assume that ug € R generate the minimum
nonzero ideal of RfIxyy modulo Ix41 for every k. Then for every
c € R®, Ann(c) = 0. Hence, for all ¢ = p* > 0, R+ is a direct
summand of R+ if and only if ugce ¢ Ik.HR% for every integer k > 0.

LEMMA 3.9 ([5] (3.1) THEOREM). Let R be a Noetherian ring of
positive characteristic p such that R? is module finite over R. Then R
1s storngly F-regular if and only if Rp is strongly F-regular for every
prime (respectively, for every maximal) ideal P of R.

In [5], M. Hochster and C. Huneke prove that if R is regular and

R? is module-finite over R, then R is strongly F-regular. We will give
another proof of it in the following Theorem 3.10.

THEOREM 3.10. If R is regular and R? is module-finite over R,
then R is strongly F-regular.

Proof. To prove strongly F-regularity, it suffices to do so locally, by
Lemma 3.9. We may assume that (R,m) is local. Let z1,...,z4 be a
regular system of parameters for R and let I = (z%,--- ,z%). Then for
every ¢ € RO, if ukc% € Ik+1R% for some integer ¢ = p®,k > 0, then

1 1. k kq - o 1 1
cv € I1 Rv since 2, ...,z is also a regular sequence. But if ¢v € 1 R+

for all ¢ > 0, then ¢ € I{q] for all ¢ > 0, ie., ¢ € ﬂIw c nl =

0 by the Nakayama’s Lemma and the Krull intersection theorem, a
contradiction. Thus c¥ ¢ IR+ for some g > 0. Hence ugce ¢ It RS
for every k > 0. It follows that Rct C R splits over R by Theorem
3.3. Therefore, R is strongly F-regular.
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