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FINITELY GENERATED MODULES

SANG CHEOL LEE

Introduction

In this paper, unless otherwise indicated, we shall not assume that
our rings are commautative, but we shall always assume that every ring
has an identity element. By a module, we shall always mean a unitary
left module.

We provide a characterization of non-zero finitely generated Noe-
therian modules, some properties of finitely generated Noetherian and
Artinian modules, and the localization Eg of a finitely generated mod-
ule E over a commutative ring R with respect to a multiplicatively
closed subset S of R not containing 0.

Finally, this paper deals with aspects of the identification of the
maximal submodules of a finitely generated module over a commutative
ring R. It shows an analogy between this set of submodules and the
spectrum of R.

1. Finitely generated Noetherian and Artinian modules

The Cohen theorem [C50] says that if every prime ideal in a com-
mutative ring R is finitely generated, then R is Noetherian. We first
generalize this result.

Let E be an R-module. A submodule M of F is said to be a mazimal
submodule of E if (i) M is a proper submodule of E and (ii) there is
no proper submodule of E strictly containing M.

It is well known [SV72] that every non-zero finitely generated R-
module possesses a maximal submodule.

DEFINITION. Let E be an R-module. Then a submodule P of E is
said to be a prime submodule of E if (a) P is proper and (b) whenever
re € P{(re€ R, e€ E), theneithere € Por rE C P.
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LEMMA 1. Let R be a commutative ring and A a simple R-module.
Then every zero-divisor on A is an annihilator of A.

Proof. Let r be an arbitrary zero-divisor on A. Then there exists
e € A, e # 0 such that re = 0. Since A is a simple R-module, the
submodule of A generated by e must be A itself. Hence

rA =r(Re) = (rR)e = (Rr)e = R(re) =0

and so r is an annihilator of A.

PROPOSITION 2. Let R be a commutative ring and A an R-module.
Then every maximal submodule of A is prime.

Proof. Let M be an arbitrary maximal submodule of A. Then M
is proper. Replacing A by A/M, we can assume that A is a simple
R:module and M = 0. It suffices to show that every zero-divisor on A
is an annihilator of A. But, this follows from Lemma 1.

Note that for every R-module E, the annihilator, denoted by AnngFE,
of E is a two-sided ideal of R. Let F be an R-module and P a sub-
module of E. Let p denote Anng(E/P). Then if P is prime, then p is
a prime ideal of R by the definitions. Further, if P is maximal, then
p is a maximal ideal of R. In fact, E/P is a simple R-module and is
R-isomorphic to R/m for some maximal left ideal m of R. This implies
that

p=Anng(E/P)= Anng(R/m)=m,

which becomes a maximal ideal of R. Hence we have the following
result.

PROPOSITION 3. Let E be an R-module and P a submodule of A.
Let p denote Anng(E/P). Then :

(i) P is prime if and only if the factor module E/P, as an Rfp-
module, is torsion-free ;

(i) If P is maximal, then E/P, as an R/p-module, is divisible. In
particular, when E is cyclic over a commutative ring R, P is maximal
if and only if Rfp is a field.

If N is an R-submodule of an R-module E and a an ideal of R, we
define N :g a to be the R-submodule of E consisting of all z € E such
that az C N.
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LEMMA 4. Let N be a submodule of an R-module E and r an
element of R. If N +rE and N :g rR are finitely generated, then N
is also finitely generated.

Proof. Adapt the proof of [N62, (3.3), p.8].

It is well known [N62] that every finitely generated module over a
Noetherian ring is a Noetherian module. Note that any submodule of
a finitely generated module is not necessarily finitely generated. The
following result is a characterization of finitely generated Noetherian
modules and is also a generalization of the Cohen theorem.

THEOREM 5. A non-zero finitely generated R-module E is Noether-
ian if and only if every prime submodule of E is finitely generated.

Proof. The only if part is a consequence of [N62, (3.1), p.7]. Use
Zorn’s lemma and Lemma 4 to prove the if part (cf. [N62, (3.4), p.8]).

The Formanek theorem [F73] says that if R is a commutative ring
and M = Rmy + --- + Rmy is a faithful finitely generated R-module
which satisfies the ascending chain condition (ACC) on “extended sub-
modules” IM, where I is an ideal in R, then M is a Noetherian R-
module and hence R is a Noetherian ring. In the remainder of this
section we discuss under what conditions ‘faithful’ can be replaced.

LEMMA 6. Let M = Rm; +- - -+ Rmy be a finitely generated module
over a commutative ring R. Suppose that, for every ideal I in R and
for each i, Im; is equal to Rm; N IM. Then M satisfies ACC (resp.
DCC) on extended submodules if and only if each Rm;, satisfies ACC
(resp. DCC) on extended submodules.

Proof. We consider only the ACC case since the proof of the DCC
case is similar.

Assume that M satisfies ACC on extended submodules. We show
only the case of : = 1 since the proof of the other case is similar.
Consider the ascending chain

ILimy CLhmy ClIsmy C---
of extended submodules of Rm;. This gives an ascending chain

Anng(Rmi/Iym;) C Anng(Rmy/Irmy) € Anng(Rmi/Izsmq) C -
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of ideals of R. But, each Anng(Rm;/Iim,) is equal to the sum I; +
Anng(m;). We get an ascending chain

(Ii + Aongm)M C (I, + Anngmy )M C (I3 + Anngm )M C ---

of extended submodules of M. By our assumption, there exists a pos-
itive integer s such that (I, + Anngm; )M = (I, + Anngm, )M for all
n > s. Thus,

I,my = Rm,NI,M
C Rmy N (I, + Aongpmy )M
= Rmj N (I, + Anngm )M
= (I, + Anngmy )my
= [,
forall n > s. Also, it is clear that I,m; 2 I,m; for all n > s. Therefore
the given ascending chain terminates.

Conversely, assume that each Rm; satisfies ACC on extended sub-
modules. Consider the ascending chain

IMCLMCILMC---
of extended submodules of M. This gives ascending chains
Rm;NnIMC RN LM C Rm;NLMC---,1=1,...,k

But, Rm; N I, M = I,m; for each 1 < ¢ < k and for each n > 1. By
our assumption, for each 1 < ¢ < k there exists a positive integer s;
such that I,m; = I,,;m; for all n > s;. Take s = max{ss,s2,...,8k}.
Then I,m; = I,m; for all n > s. Hence

InM =I,my+Inmg+- -+ Inmg = I;my + Iomg + - -+ I;mp = LM

for all n > s. Thus, the given ascending chain terminates.
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THEOREM 7. Let M be as in Lemma 6. If, for every ideal I in R and
for each t, I'm; is equal to Rm;NIM, and M satisfies ACC (resp. DCC)
on extended submodules, then M is a Noetherian (resp. Artinian) R-
module and hence R/AnngM is a Noetherian (resp. Artinian) ring.

Proof. We consider only the Noetherian case, since the proof of the
Artinian case is similar. By our hypothesis and Lemma 6 each Rm;
in M satisfies ACC on extended submodules. Since each Rm; is R-
isomorphic to R/Anngm;, it is Noetherian. By [SV72, Proposition
1.18, p.18] Rm; @ --- & Rmy is Noetherian. Define a mapping f :
Rmi @ --®Rmy — Rmy+---+Rmy by f(rimy,...,remg) = rimy +
-+ + rgmy, where r; € R. Then f is an epimorphism. This gives an
exact sequence

0—-Kerf Rm & ---®Rmy - M —-0

of R-modules. Hence M is Noetherian.

Now define a mapping ¢ : R — Rm; & --- ® Rmy by g(r) =
(rmy,...,rmy), where r € R. Then g is an R-homomorphism and
Kerg = AnngM. So, R/AnngM can be regarded as an R-submodule
of Rmy & ... & Rmy. Hence since Rm; @ -+ ® Rmi is Noetherian, so
is R/Anng M.

PROPOSITION 8. Let R be a commutative domain and M as in
Lemma 6. If M # 0 is divisible, then M is faithful. Moreover, the
converse holds if M is simple.

Proof. M is faithful if and only if for each non-zero r € R there is
at least one of my,...,my (depending on r) such that rm; # 0. This
latter property is inductive. The remainder of the proof is obvious.

It is well known [SV72, Proposition 2.6, p.33] that every injective
module is divisible. Of course, every torsion-free divisible module over
a commutative domain is injective [SV72, Proposition 2.7, p.34]. Hence
the following proposition follows from Proposition 8 and the Formanek
theorem.

PROPOSITION 9. Let R be a commutative domain and M as in
Lemma 6. If M # 0 is injective and satisfies ACC on extended submod-
ules, then M is a Noetherian R-module and hence R is a Noetherian
dornain.
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2. Localization

In this section we discuss the localization Es of a finitely generated
module E over a commutative ring R with respect to a multiplicatively
closed subset S of R not containing 0. Specifically, if P is a prime

submodule of E, then we will take S = R\Anngr(F/P) and consider
the corresponding localization of E.

PROPOSITION 10. Let E be a non-zero finitely generated module
over the commutative ring R, S a multiplicatively closed subset of R
not containing 0, and P a prime R-submodule of E. Let p denote
Anng(E/P). Then:

(i) when SNy is non-empty, then P®p Rs = E ®gr Rs ;

(ii) when SNp is empty, then P Qg Rg is a prime Rg-submodule of
the finitely generated Rs-module E ®g Rg.

Hence there is a one-to-one order-preserving correspondence be-
tween the prime Rg-submodules of E ® r Rs and the prime R-submod-
ules Q of E such that SN Annp(E/Q) is empty.

Proof. Note that E ®r Rs = Eg and P ®r Rs = Ps. Let E =
Rey 4+ --- 4 Re,. Then

(i) when s € SN p, then, for 1 < i < n, €;i/]1 = se;i/s € Ps; hence
Ps = Es.

(i1) Since E is finitely generated over R, Eg is finitely generated over
Rs.

Assume S Np is empty. Then Egs is non-zero. For, if not, then
ei/1=0for 1 <1 < n ; hence there exists o in S such that ge; = 0,
which belongs to P and so o € p, a contradiction. Clearly Ps # Es.

Now let

(a/s)(e/t) € Ps, eft¢ Ps,

where a € R,s,t € S, and e € E. Then ae/st = p/u for some u € §
and p € P; hence there is ¢ in S such that o((ua)e — (st)p) = 0, which
implies (cua)e € P. Hence since e ¢ P and P is prime in E, we have
oua € p. Since ou ¢ p we have a € p. This implies a/s € pRs. It is
well known [N76, p.41] that Annr(E/P)Rs = Anng,(Es/Ps). Thus
a/s € Anng,(Egs/Ps). Therefore every zero-divisor on Es/Ps is an
annihilator of Es/Ps.
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COROLLARY. Let E be a non-zero finitely generated module over
a commutative ring and P a prime R-submodule of E. Let p denote
Anng(E/P). Then the prime Ry-submodules cf the non-zero finitely
generated R,-module E®Q p Ry are in one-to-one order-preserving corre-
spondence with the prime R-submodules Q of E such that Anng(E/Q)
cp.

3. Spectra of finitely generated modules

This section deals with aspects of the identification of the maximal
submodules of a finitely generated module over a commutative ring R.
It shows an analogy between this set of submodules and the spectrum
of R.

If E is an R-module, then the radical of E, denoted by J(E), is
defined to be the intersection of all maximal submodules of E, that is,

JE)Y= [] M,

MeQg

where (g is the collection of all maximal submodules of E. From now
on we call Qg the mazimal spectrum of E.

The following proposition is concerned with a relation between the
radical J(E) of a finitely generated R-module E and the Jacobson
radical J(R) of R.

PROPOSITION 11. Let E be a non-zero finitely generated R-module
and a an ideal of R contained in the Jacobson radical J(R) of R. Then
a € Annp(E/J(E)). In particular, J(R) C Anng(E/J(E)).

Proof. Let Qg denote the maximal spectrum of E. Then Qg is
non-empty. For every M in Qg, Anng(E/M) is a maximal ideal of R.
Hence by hypothesis

(3.1) aC [ Anng(E/M).
MeQg

Moreover, it is easy to show that

(| Anng(E/M) = Anng(E/J(E)).
MeQp
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Therefore the proof is complete.

Note that (3.1) can also be proved by using Nakayama’s lemma
[AM69, Proposition 2.6, p.21].

Following the most general definition [CE56, p.147, M58, p.516, and
SV72, p.63] we will call a ring R a quasi-local ring if the set of non-
units of R forms a two-sided ideal, or equivalently, if R has only one
maximal two-sided ideal.

DEFINITION. An R-module M is said to be a quasi-local module if
M has the equivalent properties:

(a) M has a unique maximal submodule ;

(b) M/J(M) is simple.

Let E be a finitely generated R-module. Then the spectrum of E,
denoted by Specgr(E), is defined to be the collection of all prime R-
submodules of E. Thus, for any ring R, Specgr(R) is the ordinary
spectrum of R. Let R denote R/AnngE and define a mapping f :
Specr(E) — Specr(R) by f(P) = Aanp(E/P), where P € Specgr(E).
Then f is surjective. In fact, for any prime ideal p of R containing
Anng(E), pE is a prime R-submodule of E and Anngp(E/pE) = p.
The image of its restriction fla, : Qp — Specr(R) to the maximal
spectrum Qg of E is 1. The mapping f is not always injective since
flag is not. The example is given as follows :

EXAMPLE. Note that the ring Z of integers is a faithful Z-module.
Consider the ring Z[i] of Gaussian integers, where i = v/—1. Then
since ¢ is integral over Z, Z[t] is a finitely generated Z-module. It is
trivial that, for any prime number p of Z, pZ +¢Z and Z + i(pZ) are
distinct maximal Z-submodules of Z[i]. Moreover,

Annz(Z[i)/(pZ +iZ)) = Annz(Z[i]/(Z +i(pZ))) = pZ.

Thus the mapping f : Specz(Z[i]) — Specz(Z) is not injective.

If E is cyclic, then the mapping f : Specgr(E) — Specr(R) is bijec-
tive. Hence we have the following lemma.
LEMMA 12. Let E be a non-zero cyclic R-module. Then every

prime R-submodule of E is of the form pE, where p is a prime ideal of
R containing AnngE.



Finitely generated modules 9

THEOREM 13. Let E be a non-zero cyclic R-module and P a prime
R-submodule of E. Let p denote Anng(E/P). Then the non-zero
Ry,-module E Qr Ry is a quasi-local Ry,-module with unique maximal
Ry-submodule P ®g Ry, = pRy(E Qr Ry).

Proof. Note that E, = E®gr R, and P, = P ®Qr Ry. Since E is
cyclic, so is Ep. Hence E, is Ry-isomorphic to Ry/Anng,(E;). Since
Ry is quasi-local with unique maximal ideal pR,, E, is quasi-local with
unique maximal submodule (pR;)E, by Lemma 12.

This theorem can also be proved directly. In fact, since F is cyclic,
E =~ R/afor some ideal a of R. It follows that P = q/a for some prime
ideal q of R containing a. Hence

p = Anng(E/P) = Anng((R/a)/(a/a)) = Anng(R/q) = q.
We need to show that E, is a quasi-local R4-module.

0 —-a— R— R/a— 0 isexact so
0 - aR; = Ry — (R/a) — 0 is exact [AM69, Proposition 3.3).

Thus Ry/aRq ~ (R/a)q. In order to show that Rq/aR, is a quasi-local
Rg-module it is sufficient to prove that the ring Rq/aR, is a quasi-local
ring. But by using Proposition 3.1 of [AM69)] it is easy to see that

Rq/aRq R (R/a)q/a

which implies that Rq/aR is a quasi-local ring [AM69, Example 1,
p.38].

COROLLARY. Let R be a commutative quasi-local ring with unique
maximal ideal m. Let E be a non-zero finitely generated R-module.
Then E is quasi-local if and only if E is cyclic.

Proof. By Nakayama’s lemma [AM69, Proposition 2.6, p.21}, mE #
E. This means that E/mE is non-zero, or equivalently that Anng(E/
mE) # R. Also, m C Anng(E/mE). Hence m = Anng(E/mE). Note
that R, = R. Then if E is cyclic, then E is a quasi-local R-module
with unique maximal submodule mE (Theorem 13).
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Conversely, assume that E is quasi-local with unique maximal sub-
module M. Take e € E\M. Then e generates E. For, otherwise, Re
is a proper submodule of E. By [SV72, Proposition 1.6, p.7] Re C M,
so e € M, which contradicts.

Unless the finitely generated module E is cyclic Theorem 13 does
not hold in general because the mapping f : Specr(E) — Specr(R) is
not always injective.

Let R be a commutative quasi-local ring with unique maximal ideal
m. Let E be a finitely generated R-module. E/mE is annihilated by
m, hence is naturally an R/m-module, i.e., a vector space over the field
R/m, and as such is finite-dimensional. If E/mFE is zero-dimensional,
then mE = E. This implies that E is zero by Nakayama’s lemma
[AM69, Proposition 2.6, p.21]. Therefore we have the following result.

PROPOSITION 14. Let R be a commutative quasi-local ring with
unique maximal ideal m. Let E be a non-zero finitely generated R-
module. Then E has at least n distinct maximal R-submodules, where
n is the dimension of the vector space E /mE over the field R/m.

Proof. Let n = dimp/n(E/mE). As we have already observed, we
have 1 < n < oo. Let ¢; (1 < ¢ < n) be elements of E whose images
¢; in E/mE form a basis of this vector space. Then the e; generate E
[AM69, Proposition 2.8, p.22]. Now let M; = me; + 3, ,; Rej, 1 <1<
n. Then we shall show that these are distinct maximal submodules of
E.

Since {€;,...,€,} is a basis for the space E/mFE and 1 ¢ m it follows
that the M; are distinct. In order to show that these are maximal, it
is sufficient to prove that each E/M; is a simple R-module. Again, to
show this, it suffices to prove that E/M; is a simple R/m-module.

M; = 37,.; Re; + mE, so each E/M; is annihilated by m, hence
is naturally an R/m-module, i.e., a vector space over the field R/m.
Further, each E/M; is R/m-isomorphic to (E/mE)/(M;/mE) [SVT72,
Proposition 1.9 Corollary 2, p.11]. Hence to show that each E/M; is
a simple R/m-module, it suffices to prove that each subspace M;/mE
of the space E/mE is a hyperspace in the space E/mE. But this fol-
lows immediately from the fact that each set {€1,...,€;-1,€i41,---,€n}
forms a basis for the subspace M;/mE.
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K F is a non-zero finitely generated module over a commutative
quasi-local ring R with unique maximal ideal m, then the proposition
implies that

Card(Specr(E)) > Card(Qg) = dimp/m(E/mE),
where Card A means the cardinality of a set A.
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