FINITELY GENERATED MODULES

SANG CHEOL LEE

Introduction

In this paper, unless otherwise indicated, we shall not assume that our rings are commutative, but we shall always assume that every ring has an identity element. By a module, we shall always mean a unitary left module.

We provide a characterization of non-zero finitely generated Noetherian modules, some properties of finitely generated Noetherian and Artinian modules, and the localization E_S of a finitely generated module E over a commutative ring R with respect to a multiplicatively closed subset S of R not containing 0.

Finally, this paper deals with aspects of the identification of the maximal submodules of a finitely generated module over a commutative ring R. It shows an analogy between this set of submodules and the spectrum of R.

1. Finitely generated Noetherian and Artinian modules

The Cohen theorem [C50] says that if every prime ideal in a commutative ring R is finitely generated, then R is Noetherian. We first generalize this result.

Let E be an R-module. A submodule M of E is said to be a maximal submodule of E if (i) M is a proper submodule of E and (ii) there is no proper submodule of E strictly containing M.

It is well known [SV72] that every non-zero finitely generated R-module possesses a maximal submodule.

DEFINITION. Let E be an R-module. Then a submodule P of E is said to be a *prime submodule* of E if (a) P is proper and (b) whenever $re \in P$ ($r \in R$, $e \in E$), then either $e \in P$ or $rE \subseteq P$.

Received December 29, 1989.

LEMMA 1. Let R be a commutative ring and A a simple R-module. Then every zero-divisor on A is an annihilator of A.

Proof. Let r be an arbitrary zero-divisor on A. Then there exists $e \in A$, $e \neq 0$ such that re = 0. Since A is a simple R-module, the submodule of A generated by e must be A itself. Hence

$$rA = r(Re) = (rR)e = (Rr)e = R(re) = 0$$

and so r is an annihilator of A.

PROPOSITION 2. Let R be a commutative ring and A an R-module. Then every maximal submodule of A is prime.

Proof. Let M be an arbitrary maximal submodule of A. Then M is proper. Replacing A by A/M, we can assume that A is a simple R-module and M = 0. It suffices to show that every zero-divisor on A is an annihilator of A. But, this follows from Lemma 1.

Note that for every R-module E, the annihilator, denoted by $\operatorname{Ann}_R E$, of E is a two-sided ideal of R. Let E be an R-module and P a submodule of E. Let $\mathfrak p$ denote $\operatorname{Ann}_R(E/P)$. Then if P is prime, then $\mathfrak p$ is a prime ideal of R by the definitions. Further, if P is maximal, then $\mathfrak p$ is a maximal ideal of R. In fact, E/P is a simple R-module and is R-isomorphic to $R/\mathfrak m$ for some maximal left ideal $\mathfrak m$ of R. This implies that

$$\mathfrak{p} = \operatorname{Ann}_R(E/P) = \operatorname{Ann}_R(R/\mathfrak{m}) = \mathfrak{m},$$

which becomes a maximal ideal of R. Hence we have the following result.

PROPOSITION 3. Let E be an R-module and P a submodule of A. Let \mathfrak{p} denote $\operatorname{Ann}_R(E/P)$. Then:

- (i) P is prime if and only if the factor module E/P, as an R/\mathfrak{p} -module, is torsion-free;
- (ii) If P is maximal, then E/P, as an R/\mathfrak{p} -module, is divisible. In particular, when E is cyclic over a commutative ring R, P is maximal if and only if R/\mathfrak{p} is a field.

If N is an R-submodule of an R-module E and a an ideal of R, we define $N :_E a$ to be the R-submodule of E consisting of all $x \in E$ such that $ax \subseteq N$.

LEMMA 4. Let N be a submodule of an R-module E and r an element of R. If N + rE and $N :_E rR$ are finitely generated, then N is also finitely generated.

Proof. Adapt the proof of [N62, (3.3), p.8].

It is well known [N62] that every finitely generated module over a Noetherian ring is a Noetherian module. Note that any submodule of a finitely generated module is not necessarily finitely generated. The following result is a characterization of finitely generated Noetherian modules and is also a generalization of the Cohen theorem.

THEOREM 5. A non-zero finitely generated R-module E is Noetherian if and only if every prime submodule of E is finitely generated.

Proof. The *only if* part is a consequence of [N62, (3.1), p.7]. Use Zorn's lemma and Lemma 4 to prove the *if* part (cf. [N62, (3.4), p.8]).

The Formanek theorem [F73] says that if R is a commutative ring and $M = Rm_1 + \cdots + Rm_k$ is a faithful finitely generated R-module which satisfies the ascending chain condition (ACC) on "extended submodules" IM, where I is an ideal in R, then M is a Noetherian R-module and hence R is a Noetherian ring. In the remainder of this section we discuss under what conditions 'faithful' can be replaced.

LEMMA 6. Let $M = Rm_1 + \cdots + Rm_k$ be a finitely generated module over a commutative ring R. Suppose that, for every ideal I in R and for each i, Im_i is equal to $Rm_i \cap IM$. Then M satisfies ACC (resp. DCC) on extended submodules if and only if each Rm_i , satisfies ACC (resp. DCC) on extended submodules.

Proof. We consider only the ACC case since the proof of the DCC case is similar.

Assume that M satisfies ACC on extended submodules. We show only the case of i=1 since the proof of the other case is similar. Consider the ascending chain

$$I_1m_1\subseteq I_2m_1\subseteq I_3m_1\subseteq\cdots$$

of extended submodules of Rm_1 . This gives an ascending chain

$$\operatorname{Ann}_R(Rm_1/I_1m_1) \subseteq \operatorname{Ann}_R(Rm_1/I_2m_1) \subseteq \operatorname{Ann}_R(Rm_1/I_3m_1) \subseteq \cdots$$

of ideals of R. But, each $\operatorname{Ann}_R(Rm_1/I_im_1)$ is equal to the sum $I_i + \operatorname{Ann}_R(m_1)$. We get an ascending chain

$$(I_1 + \operatorname{Ann}_R m_1)M \subseteq (I_2 + \operatorname{Ann}_R m_1)M \subseteq (I_3 + \operatorname{Ann}_R m_1)M \subseteq \cdots$$

of extended submodules of M. By our assumption, there exists a positive integer s such that $(I_n + \operatorname{Ann}_R m_1)M = (I_s + \operatorname{Ann}_R m_1)M$ for all $n \geq s$. Thus,

$$I_n m_1 = Rm_1 \cap I_n M$$

$$\subseteq Rm_1 \cap (I_n + \operatorname{Ann}_R m_1) M$$

$$= Rm_1 \cap (I_s + \operatorname{Ann}_R m_1) M$$

$$= (I_s + \operatorname{Ann}_R m_1) m_1$$

$$= I_s m_1$$

for all $n \geq s$. Also, it is clear that $I_n m_1 \supseteq I_s m_1$ for all $n \geq s$. Therefore the given ascending chain terminates.

Conversely, assume that each Rm_i satisfies ACC on extended submodules. Consider the ascending chain

$$I_1M\subseteq I_2M\subseteq I_3M\subseteq\cdots$$

of extended submodules of M. This gives ascending chains

$$Rm_i \cap I_1M \subseteq Rm_i \cap I_2M \subseteq Rm_i \cap I_3M \subseteq \cdots, i = 1, \ldots, k.$$

But, $Rm_i \cap I_n M = I_n m_i$ for each $1 \le i \le k$ and for each $n \ge 1$. By our assumption, for each $1 \le i \le k$ there exists a positive integer s_i such that $I_n m_i = I_{s_i} m_i$ for all $n \ge s_i$. Take $s = \max\{s_1, s_2, \ldots, s_k\}$. Then $I_n m_i = I_s m_i$ for all $n \ge s$. Hence

$$I_n M = I_n m_1 + I_n m_2 + \dots + I_n m_k = I_s m_1 + I_s m_2 + \dots + I_s m_k = I_s M$$

for all $n \geq s$. Thus, the given ascending chain terminates.

THEOREM 7. Let M be as in Lemma 6. If, for every ideal I in R and for each i, Im_i is equal to $Rm_i \cap IM$, and M satisfies ACC (resp. DCC) on extended submodules, then M is a Noetherian (resp. Artinian) R-module and hence R/Ann_RM is a Noetherian (resp. Artinian) ring.

Proof. We consider only the Noetherian case, since the proof of the Artinian case is similar. By our hypothesis and Lemma 6 each Rm_i in M satisfies ACC on extended submodules. Since each Rm_i is R-isomorphic to R/Ann_Rm_i , it is Noetherian. By [SV72, Proposition 1.18, p.18] $Rm_1 \oplus \cdots \oplus Rm_k$ is Noetherian. Define a mapping $f: Rm_1 \oplus \cdots \oplus Rm_k \to Rm_1 + \cdots + Rm_k$ by $f(r_1m_1, \ldots, r_km_k) = r_1m_1 + \cdots + r_km_k$, where $r_i \in R$. Then f is an epimorphism. This gives an exact sequence

$$0 \to \operatorname{Ker} f \to Rm_1 \oplus \cdots \oplus Rm_k \to M \to 0$$

of R-modules. Hence M is Noetherian.

Now define a mapping $g: R \to Rm_1 \oplus \cdots \oplus Rm_k$ by $g(r) = (rm_1, \ldots, rm_k)$, where $r \in R$. Then g is an R-homomorphism and $\operatorname{Ker} g = \operatorname{Ann}_R M$. So, $R/\operatorname{Ann}_R M$ can be regarded as an R-submodule of $Rm_1 \oplus \cdots \oplus Rm_k$. Hence since $Rm_1 \oplus \cdots \oplus Rm_k$ is Noetherian, so is $R/\operatorname{Ann}_R M$.

PROPOSITION 8. Let R be a commutative domain and M as in Lemma 6. If $M \neq 0$ is divisible, then M is faithful. Moreover, the converse holds if M is simple.

Proof. M is faithful if and only if for each non-zero $r \in R$ there is at least one of m_1, \ldots, m_k (depending on r) such that $rm_i \neq 0$. This latter property is inductive. The remainder of the proof is obvious.

It is well known [SV72, Proposition 2.6, p.33] that every injective module is divisible. Of course, every torsion-free divisible module over a commutative domain is injective [SV72, Proposition 2.7, p.34]. Hence the following proposition follows from Proposition 8 and the Formanek theorem.

PROPOSITION 9. Let R be a commutative domain and M as in Lemma 6. If $M \neq 0$ is injective and satisfies ACC on extended submodules, then M is a Noetherian R-module and hence R is a Noetherian domain.

2. Localization

In this section we discuss the localization E_S of a finitely generated module E over a commutative ring R with respect to a multiplicatively closed subset S of R not containing 0. Specifically, if P is a prime submodule of E, then we will take $S = R \setminus Ann_R(E/P)$ and consider the corresponding localization of E.

PROPOSITION 10. Let E be a non-zero finitely generated module over the commutative ring R, S a multiplicatively closed subset of R not containing 0, and P a prime R-submodule of E. Let \mathfrak{p} denote $\operatorname{Ann}_R(E/P)$. Then:

- (i) when $S \cap \mathfrak{p}$ is non-empty, then $P \otimes_R R_S = E \otimes_R R_S$;
- (ii) when $S \cap \mathfrak{p}$ is empty, then $P \otimes_R R_S$ is a prime R_S -submodule of the finitely generated R_S -module $E \otimes_R R_S$.

Hence there is a one-to-one order-preserving correspondence between the prime R_S -submodules of $E \otimes_R R_S$ and the prime R-submodules Q of E such that $S \cap \operatorname{Ann}_R(E/Q)$ is empty.

Proof. Note that $E \otimes_R R_S = E_S$ and $P \otimes_R R_S = P_S$. Let $E = Re_1 + \cdots + Re_n$. Then

- (i) when $s \in S \cap \mathfrak{p}$, then, for $1 \leq i \leq n$, $e_i/1 = se_i/s \in P_S$; hence $P_S = E_S$.
- (ii) Since E is finitely generated over R, E_S is finitely generated over R_S .

Assume $S \cap \mathfrak{p}$ is empty. Then E_S is non-zero. For, if not, then $e_i/1 = 0$ for $1 \leq i \leq n$; hence there exists σ in S such that $\sigma e_i = 0$, which belongs to P and so $\sigma \in \mathfrak{p}$, a contradiction. Clearly $P_S \neq E_S$.

Now let

$$(a/s)(e/t) \in P_S, \quad e/t \notin P_S,$$

where $a \in R, s, t \in S$, and $e \in E$. Then ae/st = p/u for some $u \in S$ and $p \in P$; hence there is σ in S such that $\sigma((ua)e - (st)p) = 0$, which implies $(\sigma ua)e \in P$. Hence since $e \notin P$ and P is prime in E, we have $\sigma ua \in \mathfrak{p}$. Since $\sigma u \notin \mathfrak{p}$ we have $a \in \mathfrak{p}$. This implies $a/s \in \mathfrak{p}R_S$. It is well known [N76, p.41] that $\operatorname{Ann}_R(E/P)R_S = \operatorname{Ann}_{R_S}(E_S/P_S)$. Thus $a/s \in \operatorname{Ann}_{R_S}(E_S/P_S)$. Therefore every zero-divisor on E_S/P_S is an annihilator of E_S/P_S .

COROLLARY. Let E be a non-zero finitely generated module over a commutative ring and P a prime R-submodule of E. Let $\mathfrak p$ denote $\operatorname{Ann}_R(E/P)$. Then the prime $R_{\mathfrak p}$ -submodules of the non-zero finitely generated $R_{\mathfrak p}$ -module $E \otimes_R R_{\mathfrak p}$ are in one-to-one order-preserving correspondence with the prime R-submodules Q of E such that $\operatorname{Ann}_R(E/Q) \subseteq \mathfrak p$.

3. Spectra of finitely generated modules

This section deals with aspects of the identification of the maximal submodules of a finitely generated module over a commutative ring R. It shows an analogy between this set of submodules and the spectrum of R.

If E is an R-module, then the radical of E, denoted by J(E), is defined to be the intersection of all maximal submodules of E, that is,

$$J(E) = \bigcap_{M \in \Omega_E} M,$$

where Ω_E is the collection of all maximal submodules of E. From now on we call Ω_E the maximal spectrum of E.

The following proposition is concerned with a relation between the radical J(E) of a finitely generated R-module E and the Jacobson radical J(R) of R.

PROPOSITION 11. Let E be a non-zero finitely generated R-module and $\mathfrak a$ an ideal of R contained in the Jacobson radical J(R) of R. Then $\mathfrak a \subseteq \operatorname{Ann}_R(E/J(E))$. In particular, $J(R) \subseteq \operatorname{Ann}_R(E/J(E))$.

Proof. Let Ω_E denote the maximal spectrum of E. Then Ω_E is non-empty. For every M in Ω_E , $\operatorname{Ann}_R(E/M)$ is a maximal ideal of R. Hence by hypothesis

$$\mathfrak{a} \subseteq \bigcap_{M \in \Omega_E} \operatorname{Ann}_R(E/M).$$

Moreover, it is easy to show that

$$\bigcap_{M\in\Omega_E}\operatorname{Ann}_R(E/M)=\operatorname{Ann}_R(E/J(E)).$$

Therefore the proof is complete.

Note that (3.1) can also be proved by using Nakayama's lemma [AM69, Proposition 2.6, p.21].

Following the most general definition [CE56, p.147, M58, p.516, and SV72, p.63] we will call a ring R a quasi-local ring if the set of non-units of R forms a two-sided ideal, or equivalently, if R has only one maximal two-sided ideal.

DEFINITION. An R-module M is said to be a quasi-local module if M has the equivalent properties:

- (a) M has a unique maximal submodule;
- (b) M/J(M) is simple.

Let E be a finitely generated R-module. Then the spectrum of E, denoted by $\operatorname{Spec}_R(E)$, is defined to be the collection of all prime R-submodules of E. Thus, for any ring R, $\operatorname{Spec}_R(R)$ is the ordinary spectrum of R. Let \bar{R} denote R/Ann_RE and define a mapping f: $\operatorname{Spec}_R(E) \to \operatorname{Spec}_R(\bar{R})$ by $f(P) = \overline{\operatorname{Ann}_R(E/P)}$, where $P \in \operatorname{Spec}_R(E)$. Then f is surjective. In fact, for any prime ideal $\mathfrak p$ of R containing $\operatorname{Ann}_R(E)$, $\mathfrak p E$ is a prime R-submodule of E and $\operatorname{Ann}_R(E/\mathfrak p E) = \mathfrak p$. The image of its restriction $f|_{\Omega_E}: \Omega_E \to \operatorname{Spec}_R(\bar{R})$ to the maximal spectrum Ω_E of E is $\Omega_{\bar{R}}$. The mapping f is not always injective since $f|_{\Omega_E}$ is not. The example is given as follows:

EXAMPLE. Note that the ring **Z** of integers is a faithful **Z**-module. Consider the ring **Z**[i] of Gaussian integers, where $i = \sqrt{-1}$. Then since i is integral over **Z**, **Z**[i] is a finitely generated **Z**-module. It is trivial that, for any prime number p of **Z**, $p\mathbf{Z} + i\mathbf{Z}$ and $\mathbf{Z} + i(p\mathbf{Z})$ are distinct maximal **Z**-submodules of **Z**[i]. Moreover,

$$\operatorname{Ann}_{\mathbf{Z}}(\mathbf{Z}[i]/(p\mathbf{Z}+i\mathbf{Z})) = \operatorname{Ann}_{\mathbf{Z}}(\mathbf{Z}[i]/(\mathbf{Z}+i(p\mathbf{Z}))) = p\mathbf{Z}.$$

Thus the mapping $f: \operatorname{Spec}_{\mathbf{Z}}(\mathbf{Z}[i]) \to \operatorname{Spec}_{\mathbf{Z}}(\mathbf{Z})$ is not injective.

If E is cyclic, then the mapping $f: \operatorname{Spec}_R(E) \to \operatorname{Spec}_R(\bar{R})$ is bijective. Hence we have the following lemma.

LEMMA 12. Let E be a non-zero cyclic R-module. Then every prime R-submodule of E is of the form $\mathfrak{p}E$, where \mathfrak{p} is a prime ideal of R containing $\mathrm{Ann}_R E$.

THEOREM 13. Let E be a non-zero cyclic R-module and P a prime R-submodule of E. Let p denote $\operatorname{Ann}_R(E/P)$. Then the non-zero $R_{\mathfrak{p}}$ -module $E \otimes_R R_{\mathfrak{p}}$ is a quasi-local $R_{\mathfrak{p}}$ -module with unique maximal $R_{\mathfrak{p}}$ -submodule $P \otimes_R R_{\mathfrak{p}} = \mathfrak{p} R_{\mathfrak{p}}(E \otimes_R R_{\mathfrak{p}})$.

Proof. Note that $E_{\mathfrak{p}} = E \otimes_R R_{\mathfrak{p}}$ and $P_{\mathfrak{p}} = P \otimes_R R_{\mathfrak{p}}$. Since E is cyclic, so is $E_{\mathfrak{p}}$. Hence $E_{\mathfrak{p}}$ is $R_{\mathfrak{p}}$ -isomorphic to $R_{\mathfrak{p}}/\mathrm{Ann}_{R_{\mathfrak{p}}}(E_{\mathfrak{p}})$. Since $R_{\mathfrak{p}}$ is quasi-local with unique maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$, $E_{\mathfrak{p}}$ is quasi-local with unique maximal submodule $(\mathfrak{p}R_{\mathfrak{p}})E_{\mathfrak{p}}$ by Lemma 12.

This theorem can also be proved directly. In fact, since E is cyclic, $E \approx R/\mathfrak{a}$ for some ideal \mathfrak{a} of R. It follows that $P \approx \mathfrak{q}/\mathfrak{a}$ for some prime ideal \mathfrak{q} of R containing \mathfrak{a} . Hence

$$\mathfrak{p} = \operatorname{Ann}_R(E/P) = \operatorname{Ann}_R((R/\mathfrak{a})/(\mathfrak{q}/\mathfrak{a})) = \operatorname{Ann}_R(R/\mathfrak{q}) = \mathfrak{q}.$$

We need to show that $E_{\mathfrak{q}}$ is a quasi-local $R_{\mathfrak{q}}$ -module.

$$0 \to \mathfrak{a} \to R \to R/\mathfrak{a} \to 0$$
 is exact so

$$0 \to \mathfrak{a} R_{\mathfrak{q}} \to R_{\mathfrak{q}} \to (R/\mathfrak{a})_{\mathfrak{q}} \to 0 \quad \text{is exact [AM69, Proposition 3.3]}.$$

Thus $R_q/aR_q \approx (R/a)_q$. In order to show that R_q/aR_q is a quasi-local R_q -module it is sufficient to prove that the ring R_q/aR_q is a quasi-local ring. But by using Proposition 3.1 of [AM69] it is easy to see that

$$R_{\rm q}/{\mathfrak a}R_{\rm q} pprox (R/{\mathfrak a})_{{
m q}/{\mathfrak a}}$$

which implies that $R_{q}/\mathfrak{a}R_{q}$ is a quasi-local ring [AM69, Example 1, p.38].

COROLLARY. Let R be a commutative quasi-local ring with unique maximal ideal m. Let E be a non-zero finitely generated R-module. Then E is quasi-local if and only if E is cyclic.

Proof. By Nakayama's lemma [AM69, Proposition 2.6, p.21], $mE \neq E$. This means that E/mE is non-zero, or equivalently that $Ann_R(E/mE) \neq R$. Also, $m \subseteq Ann_R(E/mE)$. Hence $m = Ann_R(E/mE)$. Note that $R_m = R$. Then if E is cyclic, then E is a quasi-local R-module with unique maximal submodule mE (Theorem 13).

Conversely, assume that E is quasi-local with unique maximal submodule M. Take $e \in E \setminus M$. Then e generates E. For, otherwise, Re is a proper submodule of E. By [SV72, Proposition 1.6, p.7] $Re \subseteq M$, so $e \in M$, which contradicts.

Unless the finitely generated module E is cyclic Theorem 13 does not hold in general because the mapping $f: \operatorname{Spec}_R(E) \to \operatorname{Spec}_R(\bar{R})$ is not always injective.

Let R be a commutative quasi-local ring with unique maximal ideal m. Let E be a finitely generated R-module. E/mE is annihilated by m, hence is naturally an R/m-module, i.e., a vector space over the field R/m, and as such is finite-dimensional. If E/mE is zero-dimensional, then mE = E. This implies that E is zero by Nakayama's lemma [AM69, Proposition 2.6, p.21]. Therefore we have the following result.

PROPOSITION 14. Let R be a commutative quasi-local ring with unique maximal ideal m. Let E be a non-zero finitely generated R-module. Then E has at least n distinct maximal R-submodules, where n is the dimension of the vector space E/mE over the field R/m.

Proof. Let $n = \dim_{R/\mathfrak{m}}(E/\mathfrak{m}E)$. As we have already observed, we have $1 \leq n < \infty$. Let e_i $(1 \leq i \leq n)$ be elements of E whose images \overline{e}_i in $E/\mathfrak{m}E$ form a basis of this vector space. Then the e_i generate E [AM69, Proposition 2.8, p.22]. Now let $M_i = \mathfrak{m}e_i + \sum_{j \neq i} Re_j$, $1 \leq i \leq n$. Then we shall show that these are distinct maximal submodules of E.

Since $\{\overline{e}_1, \ldots, \overline{e}_n\}$ is a basis for the space E/mE and $1 \notin m$ it follows that the M_i are distinct. In order to show that these are maximal, it is sufficient to prove that each E/M_i is a simple R-module. Again, to show this, it suffices to prove that E/M_i is a simple R/m-module.

 $M_i = \sum_{j \neq i} Re_j + mE$, so each E/M_i is annihilated by m, hence is naturally an R/m-module, i.e., a vector space over the field R/m. Further, each E/M_i is R/m-isomorphic to $(E/\text{m}E)/(M_i/\text{m}E)$ [SV72, Proposition 1.9 Corollary 2, p.11]. Hence to show that each E/M_i is a simple R/m-module, it suffices to prove that each subspace $M_i/\text{m}E$ of the space E/mE is a hyperspace in the space E/mE. But this follows immediately from the fact that each set $\{\overline{e}_1, \ldots, \overline{e}_{i-1}, \overline{e}_{i+1}, \ldots, \overline{e}_n\}$ forms a basis for the subspace $M_i/\text{m}E$.

If E is a non-zero finitely generated module over a commutative quasi-local ring R with unique maximal ideal m, then the proposition implies that

$$\operatorname{Card}(\operatorname{Spec}_R(E)) \ge \operatorname{Card}(\Omega_E) \ge \dim_{R/\mathfrak{m}}(E/\mathfrak{m}E),$$

where Card A means the cardinality of a set A.

References

- [AM69] Atiyah, M. F. and MacDonald, I. G., Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969.
- [CE56] Cartan, H. and Eilenberg, S., Homological algebra, Princeton University Press, 1956.
- [C50] Cohen, I. S., Commutative rings with restricted minimum condition, Duke Math. J. 17(1950), 27-42.
- [F73] Formanek, E., Faithful Noetherian Modules, Proc. Amer. Math. Soc. 41 (1973), 381-383.
- [M58] Matlis, E., Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
- [N62] Nagata, M., Local rings, Interscience Tracts in Pure and Applied Mathematics, No.13, J. Wiley and Sons, 1962.
- [N76] Northcott, D. G., Finite Free Resolutions, Cambridge Univ. Press, 1976.
- [SV72] Sharpe, D. W. and Vámos, P., Injective modules, Cambridge, 1972.

Department of Mathematics Education Chonbuk National University Chonju 560-756, Korea