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FINITELY GENERATED MODULES

SANG CHEOL LEE

Introduction

In this paper, unless othenoise indicated, we shall not assume that
our rings are commutative, but we shall always assume that every ring
has an identity element. By a module, we shall always mean a unitary
left module.

We provide a characterization of non-zero finitely generated Noe­
therian modules, some properties of finitely generated Noetherian and
Artinian modules, and the localization Es of a finitely generated mod­
ule E over a commutative ring R with respect to a multiplicatively
closed subset S of R not containing O.

Finally, this paper deals with aspects of the identification of the
maximal submodules of a finitely generated module over a commutative
ring R. It shows an analogy between this set of submodules and the
spectrum of R.

1. Finitely generated Noetherian and Artinian modules

The Cohen theorem [C50] says that if every prime ideal in a com­
mutative ring R is finitely generated, then R is Noetherian. We first
generalize this result.

Let E be an R-module. A submodule M of E is said to be a maximal
submodule of E if (i) M is a proper submodule of E and (ii) there is
no proper submodule of E strictly containing M.

It is well known [SV72] that every non-zero finitely generated R­
module possesses a maximal submodule.

DEFINITION. Let E be an R-module. Then a submodule P of E is
said to be a prime submodule of E if (a) P is proper and (b) whenever
re E P (r E R, e E E), then either e E P or rE ~ P.
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LEMMA 1. Let R be a commutative ring and A a simple R-module.
Then every zero-divisor on A is an annihilator of A.

Proof. Let r be an arbitrary zero-divisor on A. Then there exists
e E A, e =1= 0 such that re = O. Since A is a simple R-module, the
submodule of A generated by e must be A itself. Hence

TA = r(Re) = (rR)e = (Rr)e = R(re) = 0

and so r is an annihilator of A.

PROPOSITION 2. Let R be a commutative ring and A an R-module.
Then every maximal submodule of A is prime.

Proof. Let M be an arbitrary maximal submodule of A. Then M
is proper. Replacing A by AIM, we can assume that A is a simple
R'-module and M = O. It suffices to show that every zero-divisor on A
is an annihilator of A. But, this follows from Lemma 1.

Note that for every R-module E, the annihilator, denoted by AnnRE,
of E is a two-sided ideal of R. Let E be an R-module and P a sub­
module of E. Let p denote AnnR(EIP). Then if P is prime, then p is
a prime ideal of R by the definitions. FUrther, if P is maximal, then
p is a maximal ideal of R. In fact, ElP is a simple R-module and is
R-isomorphic to RIm for some maximal left ideal m of R. This implies
that

p = AnnR(EIP) = AnnR(Rlm) = m,

which becomes a maximal ideal of R. Hence we have the following
result.

PROPOSITION 3. Let E be an R-module and P a submodule of A.
Let p denote AnnR(EIP). Then:

(i) P is prime if and only if the factor module EIP, as an Rlp­
module, is torsion-free ;

(ii) If P is maximal, then ElP, as an RIp-module, is divisible. In
particular, when E is cyclic over a commutative ring R, P is maximal
if and only if RIp is a field.

IT N is an R-submodule of an R-module E and 11 an ideal of R, we
define N :E 11 to be the R-submodule of E consisting of all x E E such
that l1X ~ N.
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LEMMA 4. Let N be a submodule of an R-module E and r an
element of R. If N + rE and N :E rR are finitely generated, then N
is also finitely generated.

Proof. Adapt the proof of [N62, (3.3), p.8].

It is well known [N62] that every finitely generated module over a
Noetherian ring is a Noetherian module. Note that any submodule of
a finitely generated module is not necessarily finitely generated. The
following result is a characterization of finitely generated Noetherian
modules and is also a generalization of the Cohen theorem.

THEOREM 5. A non-zero finitely generated R-module E is Noether­
ian if and only if every prime submodule of E is finitely generated.

Proof. The only if part is a consequence of [N62, (3.1), p.7]. Use
Zom's lemma and Lemma 4 to prove the if part (cf. [N62, (3.4), p.8]).

The Formanek theorem [F73] says that if R is a commutative ring
and M = Rml + ... + Rmk is a faithful finitely generated R-module
which satisfies the ascending chain condition (ACC) on "extended sub­
modules" IM, where I is an ideal in R, then M is a Noetherian R­
module and hence R is a Noetherian ring. In the remainder of this
section we discuss under what conditions 'faithful' can be replaced.

LEMMA 6. Let M = Rml +.. ·+Rmk be a finitely generated module
over a commutative ring R. Suppose that, for every ideal I in R and
for each i, Imi is equal to Rmi n fM. Then M satisfies ACC (resp.
DCC) on extended submodules if and only if each Rm" satisfies ACC
(resp. DCC) on extended submodules.

Proof. We consider only the ACC case since the proof of the ncc
case is similar.

Assume that M satisfies ACC on extended submodules. We show
only the case of i = 1 since the proof of the other case is similar.
Consider the ascending chain

of extended submodules of Rml. This gives an ascending chain
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of ideals of R. But, each AnnR(Rmt/limt} is equal to the sum Ii +
AnnR(mI)' We get an ascending chain

of extended submodules of M. By our assumption, there exists a pos­
itive integer s such that (In + AnnRmI)M = (Is + AnnRmI)M for all
n ~ s. Thus,

Inml = RmI n InM

~ RmI n (In + AnnRmI)M

= RmI n (Is + AnnRmI)M

= (Is +AnnRmI)ml

=IsmI

for all n ~ s. Also, it is clear that Inml 2 IsmI for all n ~ s. Therefore
the given ascending chain terminates.

Conversely, assume that each Rmi satisfies ACC on extended sub­
modules. Consider the ascending chain

of extended submodules of M. This gives ascending chains

But, Rmi n InM = Inmi for each 1 5 i 5 k and for each n ~ 1. By
our assumption, for each 1 5 i 5 k there exists a positive integer Si

such that Inmi = Is;mi for all n ~ Si. Take S = max{sl,s2,oo .,Sk}.
Then Inmi = Ismi for all n ~ s. Hence

for all n 2 s. Thus, the given ascending chain terminates.
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THEOREM 7. Let M be as in Lemma 6. H, for every ideal I in R and
for each i, Imj is equal to RmjnIM, and M satisfies ACC (resp. DCC)
on extended submodules, then M is a Noetherian (resp. Artinian) R­
module and hence RIAnnRM is a Noetherian (resp. Artinian) ring.

Proof. We consider only the Noetherian case, since the proof of the
Artinian case is similar. By our hypothesis and Lemma 6 each Rmj
in M satisfies ACC on extended submodules. Since each Rmj is R­
isomorphic to RIAnnRmj, it is Noetherian. By [SV72, Proposition
1.18, p.18] Rml EfJ ••• EfJ Rmk is Noetherian. Define a mapping f :
Rml EfJ· .• EfJ Rmk -+ Rml +... +Rmk by f(rIml, ... , rkmk) = rIml +
'" + rkmk, where rj E R. Then f is an epimorphism. This gives an
exact sequence

o-+ Kerf -+ Rm} EfJ .•• EfJ Rmk -+ M -+ 0

of R-modules. Hence M is Noetherian.
Now define a mapping 9 : R -+ Rml EfJ ••• EfJ Rmk by g(r) =

(rml' ... , rmk), where r E R. Then 9 is an R-homomorphism and
Ker 9 = AnnRM. SO, RIArmRM can be regarded as an R-submodule
of Rml EfJ ... EfJ Rmk. Hence since Rml EfJ .•• EfJ Rmk is Noetherian, so
is RIAnnRM.

PROPOSITION 8. Let R be a commutative domain and M as in
Lemma 6. If M f. 0 is divisible, then M is faithful. Moreover, the
converse holds if M is simple.

Proof. M is faithful if and only if for each non-zero r E R there is
at least one of ml, ... ,mk (depending on r) such that rmj f. O. This
latter property is inductive. The remainder of the proof is obvious.

It is well known [SV72, Proposition 2.6, p.33] that every injective
module is divisible. Of course, every torsion-free divisible module over
a commutative domain is injective [SV72, Proposition 2.7, p.34]. Hence
the following proposition follows from Proposition 8 and the Formanek
theorem.

PROPOSITION 9. Let R be a commutative domain and M as in
Lemma 6. IfM 1= 0 is injective and satisfies ACC on extended submod­
ules, then M is a Noetherian R-module and hence R is a Noetherian
domain.
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2. Localization

In this section we discuss the localization Es of a finitely generated
module E over a commutative ring R with respect to a multiplicatively
closed subset 5 of R not containing O. Specifically, if P is a prime
submodule of E, then we will take S = R\AnnR(E/P) and consider
the corresponding localization of E.

PROPOSITION 10. Let E be a non-zero finitely generated module
over the commutative ring R, 5 a multiplicative1y closed subset of R
not containing 0, and P a prime R-submodule of E. Let p denote
AnnR(E / P). Then:

(i) when 5 n p is non-empty, then P ®R Rs = E ®R Rs ;
(ii) when 5 np is empty, then P ®R Rs is a prime Rs-submodule of

the finitely generated Rs-module E ®R Rs.
Hence there is a one-to-one order-preserving correspondence be­

tween the prime Rs-submodules of E®RRs and the prime R-submod­
ules Q of E such that 5 n AnnR(E/Q) is empty.

Proof. Note that E ®R Rs = Es and P ®R Rs = Ps. Let E =
ReI + ... + Ren . Then

(i) when s E 5 n p, then, for 1 ~ i ~ n, ei/l = seds E Ps; hence
Ps = Es.

(ii) Since E is finitely generated over R, Es is finitely generated over
Rs .

Assume 5 n p is empty. Then Es is non-zero. For, if not, then
ei/l = 0 for 1 ~ i ~ n ; hence there exists (j in S such that (jei = 0,
which belongs to P and so (j E P, a contradiction. Clearly Ps i= Es.

Now let

(a/s)(e/t) E Ps, eft rt: Ps,

where a E R,s,t E 5, and e E E. Then ae/st = piu for some u E S
and pEP; hence there is a in S such that a((ua)e - (st)p) = 0, which
implies (aua)e E P. Hence since e rt: P and P is prime in E, we have
aua E p. Since au rf:. p we have a E p. This implies a/sE pRs. It is
well known [N76, pAl] that AnnR(E/P)Rs = AnnRs(Es/Ps). Thus
a/s E AnnRs(Es/Ps). Therefore every zero-divisor on Es/Ps is an
annihilator of Es/Ps.
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COROLLARY. Let E be a non-zero finitely generated module over
a commutative ring and P a prime R-submodule of E. Let p denote
AnnR(EjP). Then the prime Rp-submodules of the non-zero finitely
generated Rp-module E0RRp are in one-to-one order-preserving corre­
spondence with theprimeR-submodules Q of E such that AnnR(EjQ)
~ p.

3. Spectra of finitely generated modules

This section deals with aspects of the identification of the maximal
submodules of a finitely generated module over a commutative ring R.
It shows an analogy between this set of submodules and the spectrum
of R.

IT E is an R-module, then the radical of E, denoted by J(E), is
defined to be the intersection of all maximal submodules of E, that is,

J(E) = n M,
MEOE

where nE is the collection of all maximal submodules of E. From now
on we call nE the maximal spectrum of E.

The following proposition is concerned with a relation between the
radical J(E) of a finitely generated R-module E and the Jacobson
radical J(R) of R.

PROPOSITION 11. Let E be a non-zero finitely generated R-module
and a an ideal of R contained in the Jacobson radical J(R) of R. Then
a ~ AnnR(EjJ(E)). In particular, J(R) ~ AnnR(EjJ(E)).

Proof. Let nE denote the maximal spectrum of E. Then nE is
non-empty. For every M in nE, AnnR(EjM) is a maximal ideal of R.
Hence by hypothesis

(3.1) a C n AnnR(EjM).
MEOE

Moreover, it is easy to show that

n AnnR(EjM) = AnnR(EjJ(E)).
MEOE
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Therefore the proof is complete.

Note that (3.1) can also be proved by using Naka.yama's lemma
[AM69, Proposition 2.6, p.21].

Following the most general definition [CE56, p.147, M58, p.516, and
SV72, p.63] we will call a ring R a quasi-local ring if the set of non­
units of R forms a two-sided ideal, or equivalently, if R has only one
maximal two-sided ideal.

DEFINITION. An R-module M is said to be a quasi-local module if
M has the equivalent properties:

(a) M has a unique maximal submodule ;
(b) M/J(M) is simple.

Let E be a finitely generated R-module. Then the spectrum of E,
denoted by SpecR(E), is defined to be the collection of all prime R­
submodules of E. Thus, for any ring R, SpecR(R) is the ordinary
spectrum of R. Let R denote R/AnnRE and define a mapping I :
SpecR(E) -+ SpecR(R) by I(P) = AnnR(EjP), where PE SpecR(E).
Then I is surjective. In fact, for any prime ideal p of R containing
AnnR(E), pE is a prime R-submodule of E and AnnR(E/pE) = p.
The image of its restriction IloE : nE -+ SpecR(R) to the maximal
spectrum nE of E is nil. The mapping I is not always injeetive since
IloE is not. The example is given as follows:

EXAMPLE. Note that the ring Z of integers is a faithful Z-module.
Consider the ring Z[i] of Gaussian integers, where i = y'=I. Then
since i is integral over Z, Z[i] is a finitely generated Z-module. It is
trivial that, for any prime number p of Z, pZ + iZ and Z + i(pZ) are
distinct maximal Z-submodules of Z[i]. Moreover,

Annz(Z[i]/(pZ + iZ» = Annz(Z[i]/(Z + i(PZ») = pZ.

Thus the mapping I : Specz(Z[i]) -+ Specz(Z) is not injective.

If E is cyclic, then the mapping I : SpecR(E) -+ SpecR(R) is bijec­
tive. Hence we have the following lemma.

LEMMA 12. Let E be a non-zero cyclic R-module. Then every
prime R-submodule of E is of the form pE, where p is a prime ideal of
R containing AnnRE.
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THEOREM 13. Let E be a non-zero cyclic R-module and P a prime
R-submodule of E. Let P denote AnnR(EIP). Then the non-zero
Rp-module E 0R Rp is a quasi-local Rp-module with unique maximal
Rp-submodule P 0R Rp := pRp(E 0R Rp).

Proof. Note that E p := E 0R Rp and Pp := P 0R Rp. Since E is
cyclic, so is E p. Hence Ep is Rp-isomorphic to Rp/AnnR,(Ep). Since
Rp is quasi-local with unique maximal ideal pRp, Ep is quasi-local with
unique maximal submodule (pRp)Ep by Lemma 12.

This theorem can also be proved directly. In fact, since E is cyclic,
E ~ Rla. for some ideal 11 of R. It follows that P::::: q/a. for some prime
ideal q of R containing a. Hence

p = AnnR(E/P) = AnnR«R/a)/(q/I1» = AnnR(R/q) = q.

We need to show that Eq is a quasi-local Rq-module.

0-+ a. -+ R -+ R/a -+ 0 is exact so

0-+ aRq -+ Rq -+ (R/I1)q -+ 0 is exact [AM69, Proposition 3.3].

Thus Rq/I1Rq~ (R/I1)q. In order to show that Rq/I1Rq is a quasi-local
Rq-module it is sufficient to prove that the ring Rq/I1Rq is a quasi-local
ring. But by using Proposition 3.1 of [AM69] it is easy to see that

which implies that Rq/aRq is a quasi-local ring [AM69, Example 1,
p.38].

COROLLARY. Let R be a commutative quasi-local ring with unique
maximal ideal m. Let E be a non-zero finitely generated R-module.
Then E is quasi-local if and only if E is cyclic.

Proof. By Nakayama's lemma [AM69, Proposition 2.6, p.21], mE f.
E. This means that E/mE is non-zero, or equivalently that AnnR(E/
mE) f. R. Also, m ~ AnnR(E/mE). Hence m = AnnR(E/mE). Note
that Rm = R. Then if E is cyclic, then E is a quasi-local R-module
with unique maximal submodule mE (Theorem 13).
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Conversely, assume that E is quasi-local with unique maximal sub­
module M. Take e E E\M. Then e generates E. For, otherwise, Re
is a proper submodule of E. By [SV72, Proposition 1.6, p.7] Re ~ M,
so e EM, which contradicts.

Unless the finitely generated module E is cyclic Theorem 13 does
not hold in general because the mapping f : SpecR(E) --+ SpecR(R) is
not always injective.

Let R be a commutative quasi-local ring with unique maximal ideal
m. Let E be a finitely generated R-module. ElmE is annihilated by
m, hence is naturally an Rim-module, i.e., a vector space over the field
Rim, and as such is finite-dimensional. IT ElmE is zero-dimensional,
then mE = E. This implies that E is zero by Nakayama's lemma
[AM69, Proposition 2.6, p.21]. Therefore we have the following result.

PROPOSITION 14. Let R be a commutative quasi-local ring witb
unique maximal ideal m. Let E be a non-zero finitely generated R­
module. Then E bas at least n distinct maximal R-submodules, wbere
n is the dimension of the vector space E ImE over the field Rim.

Proof. Let n = dimR/m(E/rnE). As we have already observed, we
have 1 ~ n < 00. Let ej (1 ~ i ~ n) be elements of E whose images
ei in ElmE form a basis of this vector space. Then the ei generate E
[AM69, Proposition 2.8, p.22]. Now let M j = mej +L:#j Rej, 1 ~ i ::;
n. Then we shall show that these are distinct maximal submodules of
E.

Since {el,.'" en} is a basis for the space E ImE and 1 ~ m it follows
that the M i are distinct. In order to show that these are maximal, it
is sufficient to prove that each ElMi is a simple R-module. Again, to
show this, it suffices to prove that EIMi is a simple Rim-module.

Mi = L:#i Rej + mE, so each EIMj is annihilated by rn, hence
is naturally an Rim-module, i.e., a vector space over the field Rim.
Further, each EIMj is Rim-isomorphic to (ElmE)/(MdmE) [SV72,
Proposition 1.9 Corollary 2, p.ll]. Hence to show that each EIMi is
a simple Rim-module, it suffices to prove that each subspace MilmE
of the space ElmE is a hyperspace in the space ElmE. But this fol­
lows immediately from the fact that each set {el, ... ,ej-l,ej+l,' .. ,en}
forms a basis for the subspace MdmE.
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H E is a non-zero finitely generated module over a commutative
quasi-local ring R with unique maximal ideal rn, then the proposition
implies that

where Card A means the cardinality of a set A.
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