고추 건조기(乾燥機)의 개발(開發)에 관한 연구(硏究) -시뮬레이션 및 최적화-

Development of Red Pepper Dryer -Simulation and Optimization-

  • 금동혁 (성균관대학교 농과대학 농업기계공학과) ;
  • 최창현 (성균관대학교 농과대학 농업기계공학과) ;
  • 김수연 (성균관대학교 농과대학 농업기계공학과)
  • 발행 : 1991.09.30

초록

Simulation model was developed to analyze drying process for tray type red pepper dryer and validated by experiments. This model could predict satisfactorily temperatures and moisture contents of red pepper and temperatures of drying air during drying. Optimize algorithm was developed to search control valiables (drying air temperature, air recycle ratio and air flow rate) of red pepper dryer based on a criterion of minimizing energy consumption under the constraint conditions that statisfied carotenoid retension of at least 210mg per 100g dry matter, the moisture content of bottom layer of 15% (d.b) and drying time of less than 35 hours. Step changes in drying air temperature and air recycle ratio were considered in the optimization. In single step in control variables, the difference of the moisture content between top layer and bottom layer was great and more fan power was required. As the drying trays were exchanged when the moisture content of bottom layer reached to 100% (d.b), fifty percent of energy was saved and the difference of moisture content was little. In double step changes in control variables, optimal conditions were found by changing the step when the moisture content of bottom layer reached to 100% (d.b) (about 19.8 hours from starting drying). Optimum air flow rate was $18.1cmm/m^2$. Optimum drying air temperature and air recycle ratio in the first step was $55.8^{\circ}C$ and 0.80, and in the second step $65.6^{\circ}C$ and 0.88, respectively. In triple step changes in control variables, the optimal conditions were found by changing the steps when the moisture content of bottom layer reached to 250% (d.b) and 150% (d.b). Optimal air temperatures were $66.2^{\circ}C$, $58.4^{\circ}C$ and $66.9^{\circ}C$, and optimal air recycle ratios were 0.778, 0.785, 0.862 at each step, respectively. Optimal air flow rate was $18.9cmm/m^2$. The best operating mode was triple step mode considering energy consumption, drying time, fan power, and quality of dried red pepper. When the triple step mode was used to dry the red pepper, the energy consumption was about 16.5%~57.2% less than that of the single step mode and the drying time was 6.6 hours shorter than that of the double step mode.

키워드

과제정보

연구 과제 주관 기관 : 산학협동재단