JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 4, June 1991

On Uniform Integrability

DONG IL RIM

ABSTRACT. In this paper, we show that uniform integrability is equivalent to convergence to a μ -integrable function f in L_1 for μ -integrable functions in the sense of the integral defined by Lewis.

1. Introduction

The concept of an asymptotic martingale, abbreviated as amart, was first given by Meyer [7] who proved that a continuous parametered scalar-valued amart converges almost everywhere if it is essentially bounded. Austin, Edgar, and Tulcea [1] proved that a real valued amart converges almost everywhere if it is L_1 bounded.

These amarts are integrable in the sense of the integral defined by Lewis [5]. Lewis developed the integration theory through the study of the *p*-semi-variation of the vector measure whose value is in a locally convex topological vector space V, where P is a semi-norm on V. In this paper, we show that (f_n) is uniformly integrable is equivalent to (f_n) converges to a μ -integrable function f in L_1 for μ -integrable functions in the sense of the integral defined by Lewis. Most of the notations and terminologies follow those of Smith [9].

2. Main Theorems

PROPOSITION 2.1. Let (f_n) be a sequence of μ -integrable functions. Then the following are equivalent.

- (a) (f_n) is L_1 -bounded and uniformly absolutely continuous with respect to μ .
- (b) (f_n) is uniformly integrable.

Received by the editors on 30 June 1991.

¹⁹⁸⁰ Mathematics subject classifications: Primary 45G10; Secondary 28B05.

DONG IL RIM

PROOF: First we shall show that (a) implies (b). Let $\epsilon > 0$ be given and P an arbitrary but fixed continuous semi-norm on V. By (a), we have

$$\{\sup \int_E |f_n| dv(x^*\mu): x^* \le P, n \in N\} = M < \infty$$

and there is a number $\delta > 0$ such that $\|\phi_n\|_p(E) < \epsilon$ whenever $E \in \sum$ and $\|\mu\|_P(E) < \delta$. Let $a = \frac{M}{\delta}$ and let $\delta = \frac{\epsilon}{a}$. Since $\sup \|\mu\|_p\{|f_n| > a\} \le \frac{M}{a} = \delta$, we have $\|\phi_n\|_p(\{|f_n| > a\}) < \epsilon$ for all f_n . Thus we get

$$\lim_{n\to\infty} \|\phi_n\|_p(|f_n|>a)=0$$

uniformly n, for every continuous semi-norm P. Hence (f_n) is uniformly integrable.

Next we want to show that (b) implies (a). Let P be an arbitrary but fixed continuous semi-norm on V. Since (f_n) is uniformly integrable, we have

$$\lim_{a\to\infty} \|\phi\|_p(|f_n|>a)=0$$

uniformly in n. For nonnegative μ -integrable function, $E \in \sum$ and a > 0, we obtain that

$$\int_{E} f_n \, dv(x^*\mu) = \int_{E \cap \{f_n \le a\}} f_n \, dv(x^*\mu) + \int_{E \cap \{f_n > a\}} f_n \, dv(x^*\mu)$$
$$\leq a \cdot v(x^*\mu, (f_n \le a)) + \int_{\{f_n > a\}} f_n \, dv(x^*\mu).$$

Hence we get

$$\int |f_n| \, dv(x^*\mu) \le a \cdot v(x^*\mu, (f_n \le a)) + 1 \le a \cdot \|\mu\|_p(S) + 1,$$

for each $n \in N$ and each $x^* \leq P$. It follows from Proposition 2.1 that $\|\mu\|_p(S)$ is finite. Therefore we obtain

$$\sup\{\int |f_n| \, dv(x^*\mu); n \in N, x^* \le P\} < 1 + a \cdot \|\mu\|_p(S) < \infty.$$

This means that (f_n) is L_1 -bounded. Let $\epsilon > 0$ be given. Since (f_n) is uniformly integrable, there exists an integer N_{ϵ} such that

$$\|\phi_n\|_p(|f_n| > N_\epsilon) < \frac{\epsilon}{2}$$

for each $n \in N$. Choose $\delta = \frac{\epsilon}{2N_{\epsilon}}$ and let *E* be in \sum such that $\|\mu\|_{p}(E) < \delta$. Then we have

$$\begin{split} &\int_{E} |f_{n}| \, dv(x^{*}\mu) \\ &= \int_{E \cap (|f_{n}| > N_{\epsilon})} |f_{n}| \, dv(x^{*}\mu) + \int_{E \cap (|f_{n}| \le N_{\epsilon})} |f_{n}| \, dv(x^{*}\mu) \\ &\leq \int_{(|f_{n}| > N_{\epsilon})} |f_{n}| \, dv(x^{*}\mu) + N_{\epsilon} \cdot v(x^{*}\mu, E) \\ &< \frac{\epsilon}{2} + N_{\epsilon} \cdot \|\mu\|_{p}(E) < \epsilon \end{split}$$

for each $n \in N$ and for each $x^* \in V^*$, $x^* \leq p$. Therefore

$$\|\phi_n\|_p(E) = \sup\{\int_E |f_n| \, dv(x^*\mu); \, x^* \le P\} < \epsilon$$

for each $n \in N$. This means that given any $\epsilon > 0$, there is some $\delta > 0$ such that $\|\phi_n\|_p(E) < \epsilon$ for each $n \in N$, whenever $E \in \sigma$ and $\|\mu\|_p(E) < \delta$. Therefore (f_n) is uniformly absolutely continuous with respect to μ . This completes the proof.

THEOREM 2.2. Let (f_n) be a sequence of μ -integrable functions. Then the following are equivalent.

- (a) (f_n) converges to a μ -integrable function f in L_1 .
- (b) (f_n) is uniformly integrable and (f_n) converges to f in μ -measure.

PROOF: Let P be an arbitrary but fixed continuous semi-norm. Since (f_n) converges to f in L_1 , we have

$$\lim_{n} \int |f_n - f| \, dv(x^*\mu) = 0$$

uniformly in $x^* \in V^*$, $x^* \leq P$. Take $\epsilon_0 = 1$. Then there is an integer n_1 such that $\int |f_n - f| dv(x^*\mu) < 1$ for each $n \geq n_1$, $n \in N$ and $x^* \leq P$. Hence we get

$$\int |f_n| \, dv(x^*\mu) \le \int |f_n - f| \, dv(x^*\mu) + \int |f| \, dv(x^*\mu)$$
$$\le 1 + \|\phi\|_p(S)$$

for each $n \in N$ with $n \geq n_1$, where $\|\phi\|_p(S) = \sup\{\int |f| dv(x^*\mu) : x^* \leq p\}$. Therefore we obtain

$$\sup\{\int |f_n| \, dv(x^*\mu) : x^* \le P, n \in N\}$$

= $\max\{1 + \|\phi\|_p(S), 1 + \|\phi_1\|, \dots, 1 + \|\phi_{n_1} - 1\|_p(S)\} < \infty.$

where $\|\phi\|_p(S) = \sup\{\int |f_k| dv(x^*\mu) : x^* \leq P\}$ for each $k = 1, 2, ..., n_1 - 1$. This shows that (f_n) is L_1 -bounded. Let $\epsilon > 0$ be given. Since (f_n) converges to f in L_1 , we have

$$\lim_{n} \int |f_n - f| \, dv(x^*\mu) = 0$$

uniformly in $x^* \leq P$. There is an integer n_0 such that $\int |f_n - f| dv(x^*\mu) < \frac{\epsilon}{2}$, for each $n \in N$ with $n \geq n_0$ and each $x^* \leq P$. Since f is μ -integrable, there exists a number $\delta_0 > 0$ such that $\|\phi\|_p(E) < \frac{\epsilon}{2}$ whenever $E \in \Sigma$ and $\|\mu\|_p(E) < \delta_0$. Now,

$$\int_{E} |f_{n}| dv(x^{*}\mu) \leq \int_{E} |f_{n} - f| dv(x^{*}\mu) + \int_{E} |f| dv(x^{*}\mu)$$
$$\leq \int_{E} |f_{n} - f| dv(x^{*}\mu) + \|\phi\|_{p}(E)$$

for each $x^* \leq P$. Therefore for every integer $n, n \geq n_0$ and every E in $\sum \text{ with } \|\mu\|_p(E) < \delta_0$, we have

$$\int_E |f_n| \, dv(x^*\mu) < \epsilon$$

for each $x^* \leq P$. Since f_1, \ldots, f_{n_0-1} are μ -integrable, there exist numbers $\delta_1, \delta_2, \ldots, \delta_{n_0-1}$ such that for each $m \in \{1, 2, \ldots, n_0 - 1\}$,

=

 $\|\phi_m\|_p < \epsilon$ whenever $E \in \sum$ and $\|\mu\|_p < \delta_m$. Let $\delta = \min\{\delta_0, \delta_1, \ldots, \delta_{n_0-1}\}$. Then we have $\int_E |f_n| dv(x^*\mu) < \epsilon$ for each $x^* \leq P$ and each $n \in N$, whenever $E \in \sum$ and $\|\mu\|_p(E) < \delta$. This means that (f_n) is uniformly absolutely continuous with respect to μ . Hence, by Proposition 2.1, (f_n) is uniformly integrable. Next we show that (f_n) converges to f in μ -measure. Suppose not. Then there exist $\epsilon > 0$ and $\delta > 0$ such that $\|\mu\|_p(\{s \in S : |f_n(s) - f(s)| > \epsilon\}) > \delta$ for infinitely many n. Hence $\|f_n - f\| > \epsilon\delta$ for infinitely many n. This contradiction means that (f_n) converges to f in μ -measure. By now, we showed that (a) implies (b).

Next we show that (b) implies (a). Since (f_n) converges to f in μ -measure, some subsequence (f_{n_k}) converges a.e. to f. Hence also $|f_{n_k}|$ converges a.e. to |f|. Now $\int |f_{n_k}| dv(x^*\mu)$ is bounded since (f_n) is uniformly integrable. Hence, by Fatou's lemma, we have

$$\int |f| \, dv(x^*v) \leq \lim_{k \to \infty} \inf \int |f_{n_k}| \, dv(x^*v) < \infty$$

and so $f \in L_1$. For $\epsilon > 0$, we let

$$A_n = \left\{ s \in S : |f_n(s) - f(s)| > \frac{\epsilon}{3 \|\mu\|_p(S)} \right\}.$$

Then we have $\|\mu\|_p(A_n) \to 0$ as $n \to \infty$. Now we use Proposition 2.1 to deduce that $\|\phi_n\|_p(A_n) < \frac{\epsilon}{3}$ for *n* large enough. Then we get $\|\phi\|_p(A_n) < \frac{\epsilon}{3}$, since $f \in L_1$. Consequently we have

$$\begin{split} \int |f_n - f| \, dv(x^*\mu) &= \int_{S-A_n} |f_n - f| \, dv(x^*v) + \int_{A_n} |f_n - f| \, dv(x^*\mu) \\ &\leq \frac{\epsilon}{3 \|\mu\|_p(S)} \|\mu\|_p(S - A_n) \\ &+ \int_{A_n} |f_n| \, dv(x^*\mu) + \int_{A_n} |f| \, dv(x^*\mu) \\ &< \frac{\epsilon}{3} + \|\phi_n\|_p(A_n) + \|\phi\|_p(A_n) < \epsilon, \end{split}$$

for each $n \in N$, $n \ge n_0$ and each $x^* \le P$, $x^* \in V^*$. This completes the proof.

DONG IL RIM

THEOREM 2.3. Let (f_n) be a sequence of μ -integrable functions. If there is a positive increasing function ϕ defined on $[0, \infty)$ such that

$$\lim_{t\to\infty}\phi(t)/t=+\infty$$

and $\sup \int_{S} (\phi \cdot f_n) dv(x^*\mu) < \infty$, then (f_n) is uniformly integrable.

PROOF: Let $M = \sup \int_{S} (\phi \cdot |f_{n}|) dv(x^{*}\mu)$, and suppose $\epsilon > 0$ is given. Put $a = \frac{M}{\epsilon}$ and choose t_{0} such that $\phi(t)/t \geq a$ for $t > t_{0}$. Hence on the set $\{|f_{n}| \geq t_{0}\}$ we have $|f_{n}| \leq (\phi \cdot |f_{n}|)/a$ for f_{n} for all n. So we get

$$\int_{\{|f_n| > t_0\}} |f_n| \, dv(x^*\mu) \le \frac{1}{a} \int_{\{|f_n| > t_0\}} (\phi \cdot |f_n|) \, dv(x^*\mu) \le \frac{M}{a} = \epsilon$$

for all f_n . This means that (f_n) is uniformly integrable.

COROLLARY. If (f_n) is L^p -bounded for some p > 1, then (f_n) is uniformly integrable.

References

- D.G. Austin, G.A. Edgar, and A. Ionescu Tulcea, Pointwise convergence in terms of expectations, Z. Warscheinlichkeitstheorie Gebiete 30 (1974), 17-26.
- [2] R.G. Bartle, A general bilinear vector integral, Studia Math. 15 352 (1956), 337–352.
- [3] N. Dunford and R. Schwartz, "Linear Operations," Part 1, Interscince, New York, 1958.
- [4] G.A. Edgar, and L. Sucheston, Amarts: A class of asymptotic martingales, A discrete parameter, J. Multivariate Anal. 6 no.2 (1976), 193-221.
- [5] D.R. Lewis, Integral with respect to vector measure, Pacific J. Math. 33 (1970), 151-165.
- [6] M. Heilio, "Weakly Summable Measures in Banach Spaces," Soumalainer Tiedeaktemia, Helsinki, 1988.
- [7] P.A. Meyer, "Probability and Potentials," Blaisdell, Waltham, Mass., 1966.
- [8] J. Neveu, "Discrete-Parameter Martingales," North-Holland, New York, 1975.
- [9] R.W. Smith, "Convergence Theorems for Abstract asymptotic Martingales," Ph.D. Dissertation, University of Florida, Gainesville, FL., 1979.

Department of Mathematics Chungbuk National University Cheongju, 360-763, Korea

126