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On Uniform Integrability

DongG IL RiM

ABSTRACT. In this paper, we show that uniform integrability
is equivalent to convergence to a p-integrable function f in L;

. for p-integrable functions in the sense of the integral defined
by Lewis.

1. Introduction

The concept of an asymptotic martingale, abbreviated as amart,
was first given by Meyer [7] who proved that a continuous parametered
scalar-valued amart converges almost everywhere if it is essentially
bounded. Austin, Edgar, and Tulcea [1] proved that a real valued
amart converges almost everywhere if it is L; bounded.

These amarts are integrable in the sense of the integral defined by
Lewis [5]. Lewis developed the integration theory through the study
of the p-semi-variation of the vector measure whose value is in a locally
convex topological vector space V', where P is a semi-norm on V. In
this paper, we show that (f,) is uniformly integrable is equivalent
to (fn) converges to a u-integrable function f in Ly for u-integrable
functions in the sense of the integral defined by Lewis. Most of the
notations and terminologies follow those of Smith [9].

2. Main Theorems

PROPOSITION 2.1. Let ( f,) be a sequence of u-integrable functions.
Then the following are equivalent.

(a) (fa) is Li-bounded and uniformly absolutely continuous with
respect to p.
(b) (fr) is uniformly integrable.
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PROOF: First we shall show that (a) implies (b). Let € > 0 be
given and P an arbitrary but fixed continuous semi-norm on V. By
(a), we have

{sup/ |faldv(z*p) : 2* < P,n € N} =M< o
E

and there is a number § > 0 such that ||¢,[|,(E) < € whenever E € )
and ||u||p(E) < 6. Let a = & and let § = £. Since sup ||u||,{|fn| >
a} <& =6, we have ||¢n||,({|fa] > a}) < € for all f,. Thus we get

ali»nolo “¢"“P(|fn| > a) =0

uniformly n, for every continuous semi-norm P. Hence (f,) is uni-
formly integrable.

Next we want to show that (b) implies (a). Let P be an arbi-
trary but fixed continuous semi-norm on V. Since (f,) is uniformly
integrable, we have

Lim |gllp(|fal > a)=0

uniformly in n. For nonnegative p-integrable function, E € ) and
a > 0, we obtain that

nd * = ‘ n QU a;* n *
/Ef v@"h) [En{f,,sa}f o ”)+/Er’l{fn>a}f d(a"n)
Sas@u(fa<a)+ [ fadlan)

{fn>a}

Hence we get

/ |faldv(z*p) S a-v(z*p, (fa <a)) +1<a-||plp(S)+1,

for each n € N and each z* < P. It follows from Proposition 2.1 that
|e]lp(S) is finite. Therefore we obtain

sup{ [ faldo(a"u)in € N,2* < P} < 1+ a- [l ($) < oo.
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This means that (f,) is Ly-bounded. Let € > 0 be given. Since (fn)
is uniformly integrable, there exists an integer N, such that ‘

Inllp(1fal > No) < 5

for each n € N. Choose § = 2_16\& and let E be in ) such that
ll£llp(E) < 6. Then we have

[ 1fal ot

- [ [l do(ei) + [ |fal do(a*n)
EN(]fa|>N) En(]fn|<Ne)

<[ il do(ath) + Neofau, B)
(1fnl>Ne)

€
< £+ Ne ullp(B) < ¢

for each n € N and for each z* € V*, z* < p. Therefore

|8ullp(E) = sup{ /E fal do(zp); 2* < P} < ¢

for each n € N. This means that given any € > 0, there is some
6 > 0 such that ||¢,||,(E) < € for each n € N, whenever E € o and
llellp(E) < é. Therefore (fy) is uniformly absolutely continuous with
respect to p. This completes the proof.

THEOREM 2.2. Let (fn) be a sequence of u-integrable functions.
Then the following are equivalent.
(a) (fn) converges to a pi-integrable function f in L.

(b) (fn) is uniformly integrable and (f,) converges to f in u-
measure.

PROOF: Let P be an arbitrary but fixed continuous semi-norm.
Since (f,) converges to f in L;, we have

tim [ 10— fldoa) =0
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uniformly in z* € V*, z* < P. Take ¢¢ = 1. Then there is an integer
ny such that [|fn — f|dv(z*p) < 1 for each n > ny, n € N and
z* < P. Hence we get

/Ifnldv(w*u)S/Ifn *fldv(w*u)-i’/lfldv(m*ﬂ)
< 1+|¢ll(S)

for each n € N with n > ny, where ||¢||,(S) = sup{[|f|dv(z*y) :
z* < p}. Therefore we obtain

sup( [ faldu(s") : 3" < Pin € N}
= max{1 + [|8,(S), 1+ Iilly -, 1 + I — Lp(S)} < oo.

where ||¢||,(S) = sup{[ |fx| dv(z*p) : z* < P} for each k = 1,2,...,
ny — 1. This shows that (f,) is L1-bounded. Let € > 0 be given. Since
(fn) converges to f in L;, we have

i 10— fldo(e") =0
uniformly in z* < P. There is an integer ng such that [|f, —
fldv(z*p) < £, for each n € N with n > ng and each z* < P. Since

f is p-integrable, there exists a number 8y > 0 such that ||¢||,(E) < 5
whenever E € £ and ||u||,(E) < 6. Now,

/E |l dv(z* ) < /E o= St + /E |l dv(z* )
< / \fa— fldo(@* ) + |8llp(E)
FE

for each * < P. Therefore for every integer n, n > ng and every E
in ) with ||u||,(E) < by, we have

/ [ Ful dv(a™ ) < €
FE

for each z* < P. Since fi,..., fn,—1 are p-integrable, there exist
numbers 8;,6z,...,6p,—1 such that for each m € {1,2,...,no — 1},
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|#m]lp < € whenever E € 3 and ||u|, < dm. Let § = min{do,é1,.. .,
0no—1}. Then we have fE |fn| dv(z*p) < € for each z* < P and
each n € N, whenever E € Y and |[u|,(E) < §. This means that
(frn) is uniformly absolutely continuous with respect to u. Hence, by
Proposition 2.1, ( f,) is uniformly integrable. Next we show that ( fy)
converges to f in u-measure. Suppose not. Then there exist € > 0
and 6§ > 0 such that ||u||,({s € S : |fa(s) — f(s)] > €}) > & for
infinitely many n. Hence ||f, — f|| > €6 for infinitely many n. This
contradiction means that (f,) converges to f in y-measure. By now,
we showed that (a) implies (b).

Next we show that (b) implies (a). Since (fn) converges to f in
p-measure, some subsequence ( fp,) converges a.e. to f. Hence also
|fni| converges a.e. to |f|. Now [ |fn,|dv(z*p) is bounded since (f,)
is uniformly integrable. Hence, by Fatou’s lemma, we have

/|f|dv(w*v) < klingoinf/ | fr,| dv(z*v) < 00

and so f € Ly. For € > 0, we let

= {s €5 1RO - 11> g

Then we have ||u||,(Ar) — 0 as n — co. Now we use Proposition 2.1
to deduce that ||¢n|[,(An) < 5 for n large enough. Then we get
l6ll,(Ar) < §, since f € L. Consequently we have

[ 1= flavay = [ = Nl [ Vo= fldnat)

n

< g le(S — 40
+ [ W@+ [ 1)
< 5 +[16allp(4n) + [9llp(4n) < €

for each n € N, n > ng and each z* < P, z* € V*. This completes
the proof.
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THEOREM 2.3. Let (fn) be a sequence of u-integrable functions. If
there is a positive increasing function ¢ defined on [0,00) such that

tlim #(t)/t = o0
and sup [¢(¢ - fr)dv(z*p) < 0o, then (f,) is uniformly integrable.

PROOF: Let M = sup [4(¢ - |fn|) dv(z*x), and suppose € > 0 is

given. Put a = ¥ and choose t, such that ¢(t)/t > a for t > t,.
Hence on the set {|fn| > to} we have |f,| < (¢ |fn]|)/a for f, for all

n. So we get

1 . M
/ | fnl dv(z*p) < —/ (¢ |fn])do(z*p) < — =€
{Ifal>t0} @ J{|fal>t0} a

for all f,,. This means that (f,) is uniformly integrable.

COROLLARY. If (f,) is LP-bounded for some p > 1, then (fn) is
uniformly integrable.
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