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Limits and Colimits in Fibrewise Convergence Spaces

Seok Jong Lee, Seung On Lee and Eun Pyo Lee

ABSTRACT. In this paper, we introduce the concept of the 
fibrewise convergence space as a gener시ization of both the 
notion of fibrewise topology and that of convergence. Further­
more we observe the adjointness and Galois correspondence 
between the category of fibrewise topological spaces and the 
category of fibrewise convergence spaces. Finally we investi­
gate the limit and colimit structures in these categories.

Introduction

Since LM. James [6, 7, 8] introduced the notion of fibrewise topol­

ogy, an extensive works on the theory of fibrewise topology have been 

carried out by many researchers. The fibrewise viewpoint is standard 

in the theory of fibre bundles. However, it has been recognized only 

recently that the same viewpoint is also of great value in other the­

ories, such as general topology. Many of the familiar definitions and 

theorems of ordinary topology can be generalized, in a natural way, 

so that one can develop a theory of topology over a base.

In this paper, we introduce the concept of the fibrewise convergence 

space as a generalization of both the notion of fibrewise topology and 

that of convergence. Furthermore we observe the adjointness and 

Galois correspondence between the category of fibrewise topological 

spaces and the category of fibrewise convergence spaces. Finally we 

investigate the limit and colimit structures in these categories.

For general categorical background we refer to H. Herrlich and 

G.E. Strecker [5], for the fibrewise theory to LM. James [6, 7, 8] 

and for the convergence space to E. Binz [1].

I. Preliminaries

In this section, we collect some basic definitions and known results 

about the convergence spaces from E. Binz [1] and fibrewise spaces 

from LM. James [6, 7, 8] which we shall need in later sections.
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1.1. Convergence Spaces

For any set X, we denote by F(X) the set of all filters on X, and 

by P(F(J0) the power set of F(X).

Definition 1.1： Let X be a set. A function c ： X — P(F(X)) is 

said to be a convergence structure if the following properties hold for 

any point x E X :

1) for any x E X, i E 仁(究);

2) if 주 € c(x) and 주 C 으, then Q E c(x);

3) if 주, 으 € 仁(⑦), then P C\Q E c(:r).

Here x stands for the ultrafilter on X generated by {x}. The pair 

(X, c) is named a convergence space. The filters in c{x) are said to be 

convergent to x. We usually write 刀 一스 ：z: instead of JF £ c(x).

DEFINITION 1.2: Let (X, c) and(y,c') be the convergence spaces 

and f : X — Y a map. Then f is said to be continuous at x E X if 

for any T g c(a:), f (:P) E c'(/(:r)). And f is said to be continuous if 

f is continuous at each point x of X.

The class of all convergence spaces and continuous maps forms a 

category, which will be denoted by Conv.
The category of all sets and functions between them will be de­

noted by Set. The category of all topological spaces and continuous 

functions between them will be denoted by Top.
Let (, T) be a topological space. Define that a filter on X con­

verges to x with respect to cqr if the filter :F contains the neighborhood 

filter J\fx of x. Then it is easy to check that is a convergence struc­

ture on X. This convergence structure czr is called the convergence 

structure generated by the topology T.

Let (JC, c) be a convergence space. We call a subset A of X open 

if it belongs to every filter which converges to a point of A. The 

collection of all open sets of a convergence space X fulfills the axioms 

of a topology. This topology Tc is called the topology associated to the 

convergence structure c of X.

Thus we can define two functions E : Top ―스 Conv by E(X, T) = 

(X, ct) and G : Conv — Top by G(X,c) = (X,TC). Then it is easy 

to check that E and G are functors.

Note that (1%, (X, 7^)) is the reflection for (X, c) with respect to 

the embedding functor E : Top —> Conv. Moreover it is well known 
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that the category Top is a bireflective subcategory of Conv.

1.2. Fibre wise Spaces
Given an object B of a category C, the category CB of objects 

under B is defined as follows. An object under B is a pair (tz,X) 

consisting of an object X of C and a morphism tz : B —> X of C, 

called the insertion. If X, Y are objects under B with insertions u, v 

then a morphism f : X of C is a morphism under J? if /ou = v. 

Composition in CB is defined according to the composition in C.

Again, given an object B of a category C, the Cb of objects over B 

is defined as follows. An object over B is a pair (X,p) consisting of an 

object X c£ C and a morphism p : X —* B of C, called the projection. 

If X, Y are objects over B with projections p, q then a morphism 

/ : X —> y of C is a morphism over B ii q o f = p. Composition in 

Cb is defined according to the composition in C.
Given an object B of a category C, the category Cg of objects over 

and under B is defined as follows. An object over and under B is a 

triple (u, X,p) consisting of an object X of C and a pair of morphisms

u p
B—스 X — B

of C such that pou = 1b- In particular B is regarded as an object over 

and under itself, taking ljg to be both insertion and projection. If X, 

Y are objects over and under B, with projections p, q and insertions 

u, v, then a morphism / : X —> F in C is a morphism over and under 

B f o u = v and qo f = p.

In the category SetB, let A", Y be sets over B with projections p, g, 

respectively. A fibre product X x 흐 F is the subset of X xY consisting 

of pairs (rr, y) such that p(x) = q(jj), with the projection r given by 

= p(x) = q(y). In fact, X Xb K is a product of X and Y in 

the category Set日.

2. Adjointness and Galois Correspondence

In this section, we will investigate the adjointness and Galois cor­

respondence between the categories of fibrewise spaces.

Define D : SetB — TopB by」D(X,p) = ((X,2?),p) and I: Set^ — 

TopB by J(X,p) = ((X,T),p), where T)is the discrete topology on X 
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and T is the indiscrete topology on X. Then it is easy to check that 

D and I are functors.

PROPOSITION 2.1. Let D : Sets — TopB be the discrete functor 

and U : TopB — Sets be the forgetful functor. Then D is a left 

adjoint of U and (D, U) is a Galois correspondence.

PROOF: For any (X,p) in Setn, there exist D(X,p) = ((X, P),p) 

E TopB and a map lx : (X,p) —> ［『((X, !〉),/>)• Consider ((Y, T), g) E 

TopB and a map f : (X,p) —> Z7((y,T), q) = (Y,g). Since f : 

(X,2>) —> (y,T) is a continuous map and q o f = p, there exists 

a unique continuous map f : ((A\77),p) —> ((y；T),g) such that 

l『Cf) 0 1% = /• Thus lx is a 17-universal map for (X,p) in Seta 

Hence P is a left adjoint of U. Clearly lsetB = U o D. For any 

((X,：T),p) in Top日, there exist D o l7((X,T),p) G TopB and a con­

tinuous map lx : Z>ol7((JC, T),p) — ((X, T),p). Thus DoU < 1toPb - 
Hence (D,u) is a Galois correspondence.

Similarly, we have analogous results in the categories under B. The 

forgetful functor U : Top — SetB is a left adjoint of the indiscrete 

functor I: SetB ― TopB. Also (l『, I) is a Galois correspondence.

Define D : Setj? — Convp by D(X,p) = ((X, c*),p) and I : 

Set^ — ConvB by I(X,p) = ((X, where c* is the discrete 

convergence structure and 이 is the indiscrete convergence structure. 

Then it is easy to check that D and I are functors.

PROPOSITION 2.2. Let D : Setj9 —今 Conv^ be the discrete functor 

and U : ConvB —우 Sets be the forgetful functor. Then D is a left 

adjoint ofU and (P, U) is a Galois correspondence.

Similarly, we have analogous results in the categories under B. The 

forgetful functor U : ConvB —> SetB is a left adjoint of the indiscrete 

functor I: SetB — ConvB. Also (17,1) is a Galois correspondence.

Next, we investigate the relation of the category of fibrewise topo­

logical spaces and the category of fibrewise convergence spaces. De­

fine E : TopB -今 ConvB by E((X,T),p) = ((X, cT),p) and G : 

Convjj — TopB by (구((X, c),p) = Then it is easy to

check that E and G are functors.
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Proposition 2.3. For a topological space B, let G : Coiivb — 
TopB be the associated functor and E : TopB —> Coiivb be the 

embedding functor. Then G is a left adjoint of E and ((구,」15) is a 

Galois correspondence.

PROOF: For any space ((X, c),p) in Coiivb, there exist c),p) 

= ((X,7g),p) G TopB and a continuous map 1% : ((X, c),p) — 
E((文,T),p). Consider a topological space ((y,T'),g) over B and 

a continuous map f : ((X,c),p) — jS((y,T'),g) over B. Then there 

exists a unique continuous map f : ((JV,7^),p) —> ((y,T'),g) such 

that E(f) o lx = /. Thus lx is a E-universal map for ((X, c),p) in 

Coiivb. Hence G is a left adjoint of E. Clearly G o E = 1toPb - FV》1‘ 
any ((X, c),p) in Conv^, EoE^X^ c),p) G Conv^ since B is a topo­

logical space. Then 1% : ((X, c),p) —► 乃 o <7((X, c),p) is a continuous 

map. Thus lconvB 으 EoG. Hence ((구, E) is a Galois correspondence.

We also obtain following similar results about the categories ConvB 
and Convf.

Proposition 2.4. Let G : ConvB ― TopB be the associated 

functor and E : Top5 — ConvB be the embedding functor. Then G 

is a left adjoint of E and (G, E) is a Galois correspondence.

Proposition 2.5. For a topological space B, let G : Convg — 
R _ DTopB be the associated functor and E : TopB — Conv% be the

embedding functor. Then G is a left adjoint of E and (G, E) is a 

Galois correspondence.

For other cases, we have adjointness and Galois correspondences 

only when they are trivial cases.

3. Limits and Colimits in Fibrewise Convergence Spaces

3.1. Limits in Fibrewise Convergence Spaces

In this section, we will extend the notions of limits in the category 

Conv to the categories Convp, ConvB and Convf.
First, we recall the limit structures in the category Conv.
Let X, y, Z be convergence spaces. Then the set X x Y with 

the initial convergence structure with respect to the projection maps 

{pn : X x V — X,pr2 : X xY — Y] is the product of X and Y in



80 SEOK JONG LEE, SEUNG ON LEE AND EUN PYO LEE

the category Conv. And the set E = {x E X : /(x) = g(x)} with 

the initial convergence structure with respect to e : — X is the

equalizer of /, 以 : X —> K in the category Conv. Also the set X XzY 

with the initial convergence structure with respect to the projection 

maps {pri : X Xz Y : X x乞 K — Y} is the pullback of the
. / g .

triad X —今 Z <— y in the category Conv. Let Xi be subspaces of the 

convergence space Y. Then the set DXi with the initial convergence 

structure with respect to d : QXi —> K is the intersection of Xi in the 

category Conv.

Next, we investigate the limit structures in the category Coiivb.

PROPOSITION 3.1. For convergence spaces (X,p), (V, q) over B, let 

the fibre product X x b K be a subspace of X xY. Then X x 乃 K is 

the product of X and Y in the category Conv^.

LEMMA 3.2. Equalizers in any category C are also equalizers in 

the category Cb over B.

PROOF: For spaces (X,p), Q7,?) over B, consider /, gr : X —> K in 
CB. Let (E, e) be an equalizer of f and g in C. Consider (E\ rf) E Cb 

and a morphism e' : 石' — X G such that foe' = g o e'. Then

there exists a unique morphism € : — E such that e' = e o 그, since 

(JS, e) is an equalizer of f and g in C. Since poeoe=poef = r', 

e G Cb，And clearly f o e = g o e. Thus ((E,p o e), e) is an equalizer 

of f and g in C^.

By the above lemma, we obtain the following result.

PROPOSITION 3.3. For convergence spaces (X,p), (V, q) over B, 

consider continuous maps f,g:X-^Yin the category Conv. Let 

(E, e) be the equalizer of f and g in the category Conv. Then (E, e) 

is also an equalizer of f and g in the category Conv^.

LEMMA 3.4. Intersections in any category C are also intersections 

in the category Cb over B.

PROOF: For spaces (V, q) over B, consider morphisms mi :

Xi Y in Cb. Let (X, d) be an intersection of (A\,mi) in C. And 

let qod : X — B, then clearly d G Cb，Sincepiodi = qomiodi = goj, 

di € Cff. Suppose that (Z, r) e Cp and g : Z —+ Y, 伍 : Z -스 X》such 

that mi o 坑 = g for all i E L Then there exists a unique morphism 
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h \ Z — X such that d o h = g, since (A\ <i)is an intersection of 

(Xi, mJ in C. And since q o d o h = q o g = r, h G Cb- Thus 

((X, q o d),rf) is an intersection of ((사,八), mJ in C^.
By the above lemma, we obtain the following result.

PROPOSITION 3.5. For convergence space (F, g)? consider a family 

of subspaces {(시,of 1三 Let be an intersection of

in the category Conv. Then (rL¥},d) is also an intersection 

of in the category Convb-

LEMMA 3.6. Pullbacks in any category C are also pullbacks in the 

category Cb over B.

PROOF: For spaces (X,p), (K, g), (Z, r) over B, consider a triad 
f g .

A* —’ Z <— Y三 Let (X x흐 y,pri,pr：2)be a pullback of the triad in the 

category C. And let t = po pr^ = q opr2. Consider and

morphisms f1 : W Xgf : W Y E Cb such that f o ff = g o gf. 

Then there exists a unique morphism h : W X Xz Y such that 

pn o A = /' and pr^ o h = since (X x흐 y,pri,pr2)is the pullback 

of the triad in the category C. And since toh = popri oh = poff = s, 

h € Cq. Thus ((X Xz y,f)?Pri5Pr2)is a pullback of the triad in the 

category C^.

By the above lemma, we obtain the following result.

PROPOSITION 3.7. For convergence spaces (V, q), (Z, r) over 

. . / g
B, consider the triad X —> Z — F. Let X XzY be a pullback of the 

triad in the category Conv. Then X x흐 K is also a pullback of the 

triad in the category Conv日.

Next, we investigate the limit structures in the category ConvB.

THEOREM 3.8. For a functor Z) : I —> let a natural source 

(£,(G)) be a limit of Z) : I —» C. Then (£,(&)) is also a limit of 

D:I —CB.

PROOF: Let morphisms : B — Z)i be the insertion for each i E I. 

Then is a natural source for 2) : I — C. since (£,(&)) is a 

limit of Z> : I -나 C, there exists a unique morphism r : B — L such 
that 匕 o r = 此 for each i e I. Then (r,Z) e CB. Thus (r, (£,(&))) 

is a natural source for D : I — CB. Consider any natural source 
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(r', (£',<)) for D : I — CB. Since (!,(&)) is a limit of 方 : I — C, 

there exists a unique morphism h : Lf — L such that 匕 o h = & for 

each i E !• But 흐 o A o r' = Z： o r' = Uj = 4 o r. Then h o rf = r since 

(스) is mono-source. Thus h € CB. Hence the result follows.

Note that products, equalizers, pullbacks and intersections are lim­

its. Hence by the above theorem products, equalizers, pullbacks and 

intersections in the category Conv is also products, equalizers, pull­
backs and intersections respectively in the category ConvB.

From the results obtained in the categories Conv^ and ConvB, 
we obtain that equalizers, pullbacks and intersections in the category 

Conv are also equalizers, pullbacks and intersections respectively in 

the category Convg. And products in the category Conv^ are prod­

ucts in the category Conv음.

3.2. Colimits in Fibrewise Convergence Spaces

In the section, we will extend the notions of colimits in the category 

Conv to the categories Cohvb, ConvB and Convf.
First, we recall the colimit structures in the category Conv.
Let X, y, Z be convergence spaces, then the set X + K with the 

final convergence structure with respect to the inclusion maps {i : 

X X + Y,j : Y X + Y} is the coproduct of X, Y in the 

category Conv. And the set Y/Q with the final convergence structure 

with respect to the natural map t| : F — F/Q is the coequalizer of 

gr : X —> 】< in the category Conv. Also the set X +z Y with 

the final convergence structure with respect to the inclusion maps 

{i : X X + 乞 y, j : Y — X +z Y} is the pushout of the cotriad 

트 / 。오 ,, . ， 스
A <— Z —> r in the category Conv.

Next, we investigate the colimit structures in the category Convs.

THEOREM 3.9. For a functor P : I —> Cb, let a natural sink 

(ki,20 be a colimit of Z> : I —> C. Then is also a colimit of 

P:I—CB.

PROOF: Let morphism 比 : Pi —> B be the projection for each 

i E I. Then (pi, B) is a natural sink for P : I —+ C. Since (스, K) is a 

colimit of D : I — C, there exists a unique morphism p : K B such 

that poki = pi for each i e I. Then (K,p) G Cp. Thus ((fci,K),p) is 
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a natural sink for:1 — Cb- Consider any natural sink (서, K'),p') 

for 27 :1 —> Cb. Since (fci, K) is a colimit of P : I — C, there exists 

a unique morphism h : K — K9 such that h o ki = k\ for each i G I. 

But pf o h o ki = p' o 시 = pi = p o ki. Then p' o h = p since (fcj) is 

epi-sink. Thus h E Cb- Hence the result follows.

Note that coproducts, coequalizers and pushouts are colimits. 

Hence by the above theorem coproducts, coequalizers and pushouts 

in the category Conv are also coproducts, coequalizers and pushouts 

respectively in the category Conv^.
Next, we investigate the colimit structures in the category ConvB.

PROPOSITION 3.10. fbr a family {(Ui,A"i)}iei of convergence 

spaces under B, let fibre-wedge sum IIBXi be a quotient space of 

JJXi. Then JJ Xi is a coproduct of the family 호 the cate­

gory ConvB.

LEMMA 3.11. Coequalizers in any category C are also coequalizers 
in the category CB.

PROOF: For spaces (u,X), (v, Y) under B, consider morphisms /, 

g : X Y in CB. Let (t|,Z) be a coequalizer of f and g in C. 
Consider (r',Z') G CB and a morphism a : K -누 Z' G CB such that 

a o f = a o g. Then there exists a unique morphism h : Z —> Z' such 

that h o 너 = a, since ([], Z) is a coequalizer of f and g in C. Since 

Aol]ov = aov = r', h € CB. And clearly t| o / = t| o 引 Hence 

(t|(t| o v, Z)) is a coequalizer of f and g in CB.
By the above lemma, we obtain the following result.

PROPOSITION 3.12. For convergence spaces (u,X), (v, Y) under 

B, consider continuous maps f,g:X — Yin the category Conv5. 
Let (t|, y/Q) be a coequalizer of f and g in the category Conv. Then 

(t|, K/Q) is also a coequalizer of f and g in the category ConvB.

LEMMA 3.13. Pushouts in any category C are also pushouts in the 
category CB.

PROOF: For spaces (tz, X), (v,K), (w,Z) under B, consider a co-

• f g
triad X <— Z — F. Let (jJ,X +z Y) be a pushout of the cotriad in 

the category C. And let i = i o u = j o v. Consider (<s, W) € CB and 
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morphisms : X — W, 아: K — VT e CB such that f of = gfog. 

Then there exists a unique morphism k : X +z Y W such that 

k o i = f and k o j = g1, since +z Y) is the pushout of the 

cotriad in the category C. And since k o t = k o i o u = /'ou = 昌, 
k G CB. Thus (i,J,(tyX +z F)) is a pushout of the cotriad in the 

category CB.

By the above lemma, we obtain the following result.

PROPOSITION 3.14. For convergence spaces (以, A"), (v, K), (w, Z) 
f g

under B, consider a cotriad X — Z — F. Let X +z Y be a pushout 

of the cotriad in the category Conv. Then X +z Y is also a pushout 
n

of the cotriad in the category Conv .

From the results obtained in the categories Codvb and Conv , 
we obtain that coequalizers, pushouts in the category Conv are also 
coequalizers, pushouts respectively in the category Conv%. And 

coproducts in the category ConvB are coproducts in the category 

Convf.
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