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Convexity of the Lagrangian for Set Functions

Jae Hak Lee

ABSTRACT. We consider perturbation problems and Lagrangians 
for convex set function optimization problems. In particular, 
we prove that the Lagrangian _L(Qj/) is a convex set function 
in Q for each y if the perturbation function is convex.

1. Introduction
To establish the setting for convex set function optimization, con

sider the following problem :

inf F(Q) over Q G C

where C is a convex subfamily of a a-algebra S, F:S—스 =

{+oo} is a convex set function. If F is redefined so that F(Q) = +oo 

for Q g (7, then inf F(Q) over S is equivalent to the infimum of the 

new F over all of S. Thus, no generality is lost in our model if we 

restrict attention to the case C = E. In the next section, we con

sider perturbation problems and Lagrangians for convex set function 

optimization problems.

2. Perturbation Problems and Lagrangians
Let F be a set function of S into R, and consider the minimization 

problem

Consider a family of perturbations of problem (P) obtained as fol

lows : let U be an arbitrary linear space. Let be a function on S x〔7 

into R such that 2f(Q,0) = F(Q) ; then we have an expression of F
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as the “envelope” of a collection of functions Q — u E U.

For every u € ?7, we shall consider the minimization problem :

(Pu) inf

Clearly, for u = 0, (Po) is none other than problem (P). The prob

lems (Pu) will be said to be perturbation problems related to (K). To 

define the Lagrangian of the perturbation functionlet = K be 

the dual space of (7, with the bilinear pairing ( , )•

Definition 1: Let K:Exl7—^bea perturbation function. 

Let Y be the dual space of U with bilinear pairing ( , )• Then, the 

function L : S x K —> H,

: u E U}

is said to be the Lagrangian of the perturbation function K.

DEFINITION 2: [6] Let U be an arbitrary linear space and F be its 

dual space. For a convex function f : U — R, the conjugate of f is 

the function : V —> J? defined by

f*(y) = sup{{u,y) — /(u) : uEU}.

Similarly, the conjugate of a concave function g : U — R is defined 

by

9*(y) = inf{{u, j/) — g(u) : u£U}.

It is well known [6], [7] that if / is a convex (or concave) function, 

then the conjugate function f * is a closed convex (or concave) func

tion. Moreover, (cl/)* = /* and /** = cl/, where cl/ means the 

closure of f.

THEOREM 1. Let E be a a-algebra and U be any linear space with 

l『* = K. Let K : ExU — 2? be a perturbation function of F : E -누」R. 

For a £xed Q G S, define two functions f :Y — R and h : U -今 R by

g(y) = and h(u) = —K(Q, w).
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If K(Q, •) is a closed and convex function of u E U for each Q G S, 

then the following hold :

(i) h is closed and concave,

(ii) h*(y) = ff(y) for each y eY.

(iii) g is concave.

(iv) h = gr*.

(v) 7((Q, u) = sup{L(Q, y) - (u,y) : y e Y}.

(vi) F(Q) = sup{L(fi,?/)：y eK}-

PROOF: (i), (iii) are straightfoward.

(ii)

h『(y) = inf{(?/,?!)— h(u) : u E U}

= inf {(?/, u) 十 K(Q,tt) : u E U}

= L(S브 y) = 9(y\

(iv) By (ii), (A*)* = gr*. Since h is closed, (九*)* = h.

(v) 우*(u) = inf{(u,y) — L(Q,y) : y G Y}. So, by (iv) and the 

definition of A, the result is obtained.

(vi)

F(Q) = K(Q,0) = sup{£(fi,y) — (0, y} ：y eY}

= sup{£(Q,y) ly eY}.

THEOREM 2. The Lagrangian」L(Q, y) is concave in y for each Q € 

E, and if the perturbation function K is convex on 分 xU, then L(Q, y) 

is a convex set function in Q for each y 6 Y.

PROOF: The first part is clear by the definition of the Lagrangian.

To prove the second part, let A, Q, A be given and let {Fn} be a 

Morris-sequence associated with A). For any given 6 > 0, there 

exist u*, v* G (7 such that

inf {쪼 (Q, u) + (u,y):ueU}> 印 Q, u*) 十 (u*, ?/) — 6 

and

inf {K(A, u) + (u, y)：ueU}> K 人 v*) + (u*, y) — e.
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Let u*) = r, JK"(A, v*) = s. Then, (fl,u*,r), (A, v*,s) G [2f; S x 

U]. Since K is convex on E x 17, there exist a subsequence {rnjb} of 

{rn} and a sequence {tk} with 하 一스 Ar + (1 — A)s such that

쪼(r까, Au* + (1 —A)v*) 으 가.

Since 하 — Ar + (1 — A)s, for given e > 0, we have (if necessary, by 

taking a subsequence),

K(Vnk, Au* + (1 — A>*) < Ar + (1- A)s, A: = 1,2,... .

Hence,

K(Vnk, Au* + (1 _ A)v*) + (Au* + (1 -• 슬、* 川

< O + (1-A)水(A, v*) + A(u*,y) T (v*,y) + e

< 서 피{•쪼(仏以) + (凶y)} + ^}
uEU

+ (1 — A){ inf {^(A, v) + (w, y)} + <} + e

= AL(fl, 이) 十 (1 — A)Z(A, y) + 2e.

Also,

L(Tnk,y) = inf{K(rnjb,u) + {u,y) lueU}

< 水(rnfc, Au* + (1 — A)u*) + (Au* + (1 — A)u*,?/).

Combining the above two inequalities, we have

•刀(1\川!/) < AZ(Q,j/) + (1 - 시Z(A,y) + 2e, A: =1,2,... .

Since e > 0 is arbitrary, this gives a subsequence {Fnjfe} of {Fn} 

such that

liminf L(rnjk, y) < AZ(Q, y) + (1 — A)£(A, y).

Therefore, the proof is complete.
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