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A New Variational Inequality in Non-compact Sets
and Its Application

JonG SuL LM anD Won Kvu Kimm(*)

ABSTRACT. In this note, we shall prove a new variational in-
equality in non-compact sets and as an application, we prove a
generalization of the Schauder-Tychonoff fixed point theorem.

Let E be a real Hausdorff topological vector space. Denote the dual
space of E by E* and the pairing between E* and F by (w,z) for
each w € E* and z € E. If A is a subset of E, we shall denote by 24
the family of all subsets of A and by ¢! A the closure of A in E, and
co A the convex hull of A.

The following Fan-Browder fixed point theorem {2] is essential in
convex analysis and also the basic tool in proving many variational
inequalities and intersection theorems in nonlinear functional analysis:

THEOREM[2]. Let X be a non-empty compact convex subset of a
Hausdorff topological vector space and T : X — 2% be a multimap
satisfying the following:

(1) for each x € X, T(z) is non-empty convex,

(2) for each y € X, T~ '(y) is open.

Then T has a fixed point & € X, i.e. & € T(Z).

The Fan-Browder theorem can be proved by using Brouwer’s fixed
point theorem or the KKM-theorem. Till now, there have been nu-
merous generalizations and applications of this Theorem by several
authors; e.g. see (3, 4] and references there.

In a recent paper [3|, Ding-Kim-Tan further generalize the above
result in non-compact locally convex spaces and the following is the
special case of the fixed point version of their Theorem 1.
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LEMMA [3]. Let X be a non-empty convex subset of a locally con-
vex Hausdorff topological vector space and D be a non-empty compact
subset of X. Let T : X — 2P be a multimap satisfying the following:

(1) for each z € X, T(z) is non-empty and coT(z) C D,

(2) for each y € X, T™(y) is open.

Then there exists a point & € X such that & € coT(%).

In this note, using this Lemma we shall prove a new variational
inequality in non-compact sets and as an application, we prove a gen-
eralization of the Schauder-Tychonoff fixed point theorem.

First we prove the following variational inequality in non-compact
sets.

THEOREM 1. Let X be a non-empty bounded convex subset of
a locally convex Hausdorff topological vector space E and D be a
non-empty compact subset of X. Let T : X — E* be a continuous
mapping from the relative topology of X to the strong topology of E*
satisfying the following condition:

(%) for each z € X\D, (T(y),y—=z)<0forallyecX.
Then there exists a point & € X such that
(T'(2),2 —z) £0forallxz € X.

ProoOF: Suppose the contrary, i.e. for each 2 € X there exists a
point ¥ € X such that (T'(z),> — &) > 0. Then by the assumption
(#), £ € D. Now we define a multimap P: X — 2D by

Plzy={ye D:{T(z),z —y) >0} foreach z € X.

Then for each x € X, P(z) is non-empty. We now show that co P(z) C
D. Infact, let yy, y2 € P(x); then (T'(z),z—y1) > Oand (T(z),z — y2)
> 0, so that for each ¢ € [0, 1] we have

(T(z),2 — (ty1 + (1 = B)ya))
=t{T(z),z —y1) + (1 — ) (T(z),z — y2) > 0.

By the assumption (*) again, ty; + (1 —t)y € D so that co P(z) C
D. In order to apply Lemma to the multimap P, it remains to show
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that for each y € D, P7'(y) is open in X. Let (zq) be a net in
X\P~!(y) such that (z,) converges to 2y € X. By Lemma 1 [1]
(see also [9, Lemmal] where it was observed that the result holds for
X being bounded instead of compact), for each y € D, the mapping
& — (T(z),z — y) is continuous. Therefore we have (T(z), 20 — y) =
lima (T(24), zo — y) <0, so that zg € X\P~!(y). Therefore for each
y € D, P~} (y) is open in X and the multimap P satisfies the whole
assumptions of Lemma. Hence there exists a point # € D such that
& € coP(%). Therefore there exist {y; € P(3) | i = 1,...,n} and
{A >0]2=1,...,n} such that £ = 37, \iyi and 330 A = L.
Therefore we have

0=(T(3),% - 3)

= <T(59)s57 - g/\iyi>

which is a contradiction. This completes the proof.

When X = D is compact and convex, we obtain the following

COROLLARY [2]. Let X be a non-empty compact convex subset of
a locally convex Hausdorff topological vector space E and let T : X —
E* be a continuous mapping from the relative topology of X to the
strong topology of E*. Then there exists a point £ € X such that

(T(2),2—z)<O0forallz € X.

Asin [4, 5, 7], we can further generalize Theorem 1 in more general
settings, e.g. in complex locally convex spaces or to a multimap T
with upper semicontinuity or lower semicontinuity.

As an application of Theorem 1, we prove a generalization of the
Schauder-Tychonoff fixed point theorem.

THEOREM 2. Let X be a paracompact bounded convex subset of a
locally convex HausdorfF topological vector space E and D be a non-
empty compact subset of X. Let f : X — E be a weakly continuous
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mapping (i.e. for eachp € E*, po f is continuous) such that for each
z€ X, f(z) € ez + Upso MX — z)|. Suppose further that for all
€ X\Dandpc E",

(*) if p(y — f(y)) > 0 then p(y —z) < 0.

Then there exists a point & € X such that f(2) = 3.

PROOF: Suppose that z — f(x) # 0 for all z € X. Then for each
z € X, there exists at least one linear functional p € E* such that
p(z — f(z)) > 0. Now let U(p) = {z € X | p(z — f(z}) > 0} for each
p € E*. Since f is weakly continuous, each U(p} is an open subset
of X and for each z € X, z € U(p) for some p € E*. Therefore
{U(p) | p € E*} is an open covering of the paracompact set X, so
that there exists an open locally finite refinement {V(p) | p € E*} of
{U(p) | p € E*}. Let {B, | p € E*} be ti: yus partition of
unity subordinated to this refinement.

Now we define a mapping T : X — E* by

T(x)= Y Bp(a)p foreach z € X.
pEE*

Then for each = € X, by the local finiteness of {V(p) | p € E*}, there
exist {p1,...,pPn} C E* such that

(1) (T(2), = f(2)) = ) Bpla)p(z = f(2))

pEE"

=" Bp(z — f(2)) > 0.

=1

Now we shall show that T satisfies the whole hypotheses of Theorem 1.
To show that T is continuous from the relative topology of X to the
strong topology of E*, let (z4)aer be a net in X which converges to
zo € X. Since {V(p) | p € E*} is locally finite, there exist an open
neighborhood U of z¢ in X and finite members of {V(p) | p € E*}
such that 2o e UNV{(p1)N---NV(pyn) #98. Then Up :=UNV(p1)N
-+-NV(p,) is an open neighborhood of z¢ in X. Since {(z4) converges
to zg, there exists @y € T such that for any o € T’ with a > ay,
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zo € Uy. Therefore for any a € ' with « > « and B any bounded
subset of E,

sup 3 (6o(z2) ~ B0l

t=]

sup (T(z) - T(xo>,y>] -
yeEB

n

<3

=1

5 50| (B (a) = B

p€EB

Since p; € E* and B is bounded, by Theorem 1.18 [6], there exists
M > 0 such that |sup,eppi(y)] < M for all i = 1,...,n. For any
e > 0, since each §,; is continuous, we can find a; € T such that
it [(Boi(2a)—Bp:i(20))] < 5 forall @ > a. Let oz > max{ap, a1}
Then for all &« € T" with & > ap,

sup {(T(zq) — T(-’L‘o),y)‘ <Eg,
yE€B

so that (T(z4)) converges to T(z¢) in the strong topology of E*.

Finally, suppose that there exists z; € X\D such that for some
yeX,

(T@)hy—=1)= D Bp(y)p(y —71) > 0.
pEE"

If B,(y) > 0, then p(y — f(y)) > 0, so that by the assumption (),
p(y — 1) £ 0. Hence we have EPGE‘ Bo(y)p(y — 1) < 0, which is a
contradiction. Therefore for each z € X\D, {T(y),y — z) < 0 for all
y € X. Hence by Theorem 1, there exists a point # € X such that

(2) (T(2),z —y)<OforallyeX.

By the assumption, since f(2) € ¢l {2 + |Jy,o(X — £)], there exists
two nets (yo) C X, (Aa) C R* such that (£ + As(ya — 2)) converges
to f(&). Then by (2), we have

{T(2),% ~ f(&)) = im (T(2),2 — (& + Xalyo ~ £)))
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which contradicts to (1). This completes the proof.

Theorem 2 generalizes the classical Schauder-Tychonoff fixed point
theorem and Halpern’s generalization in several aspects.

Finally, as remarked before, we can also generalize Theorem 2 in
more general settings (see [8]).
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