A New Variational Inequality in Non-compact Sets and Its Application

JONG SUL LIM AND WON KYU KIM^(*)

ABSTRACT. In this note, we shall prove a new variational inequality in non-compact sets and as an application, we prove a generalization of the Schauder-Tychonoff fixed point theorem.

Let E be a real Hausdorff topological vector space. Denote the dual space of E by E^* and the pairing between E^* and E by (w, x) for each $w \in E^*$ and $x \in E$. If A is a subset of E, we shall denote by 2^A the family of all subsets of A and by clA the closure of A in E, and coA the convex hull of A.

The following Fan-Browder fixed point theorem [2] is essential in convex analysis and also the basic tool in proving many variational inequalities and intersection theorems in nonlinear functional analysis:

THEOREM[2]. Let X be a non-empty compact convex subset of a Hausdorff topological vector space and $T: X \to 2^X$ be a multimap satisfying the following:

(1) for each $x \in X$, T(x) is non-empty convex,

(2) for each $y \in X$, $T^{-1}(y)$ is open.

Then T has a fixed point $\hat{x} \in X$, i.e. $\hat{x} \in T(\hat{x})$.

The Fan-Browder theorem can be proved by using Brouwer's fixed point theorem or the KKM-theorem. Till now, there have been numerous generalizations and applications of this Theorem by several authors; e.g. see [3, 4] and references there.

In a recent paper [3], Ding-Kim-Tan further generalize the above result in non-compact locally convex spaces and the following is the special case of the fixed point version of their Theorem 1.

Received by the editors on May 15, 1991.

¹⁹⁸⁰ Mathematics subject classifications: Primary 49A29; Secondary 47H10.

^(*) This paper was supported in part by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1990-91.

LEMMA [3]. Let X be a non-empty convex subset of a locally convex Hausdorff topological vector space and D be a non-empty compact subset of X. Let $T: X \to 2^D$ be a multimap satisfying the following:

- (1) for each $x \in X$, T(x) is non-empty and $co T(x) \subset D$,
- (2) for each $y \in X$, $T^{-1}(y)$ is open.

Then there exists a point $\hat{x} \in X$ such that $\hat{x} \in coT(\hat{x})$.

In this note, using this Lemma we shall prove a new variational inequality in non-compact sets and as an application, we prove a generalization of the Schauder-Tychonoff fixed point theorem.

First we prove the following variational inequality in non-compact sets.

THEOREM 1. Let X be a non-empty bounded convex subset of a locally convex Hausdorff topological vector space E and D be a non-empty compact subset of X. Let $T: X \to E^*$ be a continuous mapping from the relative topology of X to the strong topology of E^* satisfying the following condition:

(*) for each
$$x \in X \setminus D$$
, $\langle T(y), y - x \rangle \leq 0$ for all $y \in X$.

Then there exists a point $\hat{x} \in X$ such that

$$\langle T(\hat{x}), \hat{x} - x \rangle \leq 0$$
 for all $x \in X$.

PROOF: Suppose the contrary, i.e. for each $x \in X$ there exists a point $\tilde{x} \in X$ such that $\langle T(x), x - \tilde{x} \rangle > 0$. Then by the assumption $(*), \tilde{x} \in D$. Now we define a multimap $P: X \to 2^D$ by

$$P(x) = \{y \in D : \langle T(x), x - y \rangle > 0\} \text{ for each } x \in X.$$

Then for each $x \in X$, P(x) is non-empty. We now show that $co P(x) \subset D$. In fact, let $y_1, y_2 \in P(x)$; then $\langle T(x), x-y_1 \rangle > 0$ and $\langle T(x), x-y_2 \rangle > 0$, so that for each $t \in [0, 1]$ we have

$$\langle T(x), x - (ty_1 + (1-t)y_2) \rangle$$

= $t \langle T(x), x - y_1 \rangle + (1-t) \langle T(x), x - y_2 \rangle > 0.$

By the assumption (*) again, $ty_1 + (1-t)y_2 \in D$ so that $co P(x) \subset D$. In order to apply Lemma to the multimap P, it remains to show

that for each $y \in D$, $P^{-1}(y)$ is open in X. Let (x_{α}) be a net in $X \setminus P^{-1}(y)$ such that (x_{α}) converges to $x_0 \in X$. By Lemma 1 [1] (see also [9, Lemma1] where it was observed that the result holds for X being bounded instead of compact), for each $y \in D$, the mapping $x \to \langle T(x), x - y \rangle$ is continuous. Therefore we have $\langle T(x_0), x_0 - y \rangle = \lim_{\alpha} \langle T(x_{\alpha}), x_{\alpha} - y \rangle \leq 0$, so that $x_0 \in X \setminus P^{-1}(y)$. Therefore for each $y \in D$, $P^{-1}(y)$ is open in X and the multimap P satisfies the whole assumptions of Lemma. Hence there exists a point $\hat{x} \in D$ such that $\hat{x} \in co P(\hat{x})$. Therefore there exist $\{y_i \in P(\hat{x}) \mid i = 1, \ldots, n\}$ and $\{\lambda_i > 0 \mid i = 1, \ldots, n\}$ such that $\hat{x} = \sum_{i=1}^n \lambda_i y_i$ and $\sum_{i=1}^n \lambda_i = 1$. Therefore we have

$$0 = \langle T(\hat{x}), \hat{x} - \hat{x} \rangle$$

= $\left\langle T(\hat{x}), \hat{x} - \sum_{i=1}^{n} \lambda_{i} y_{i} \right\rangle$
= $\sum_{i=1}^{n} \lambda_{i} \langle T(\hat{x}), \hat{x} - y_{i} \rangle > 0$

which is a contradiction. This completes the proof.

When X = D is compact and convex, we obtain the following

COROLLARY [2]. Let X be a non-empty compact convex subset of a locally convex Hausdorff topological vector space E and let $T: X \rightarrow E^*$ be a continuous mapping from the relative topology of X to the strong topology of E^* . Then there exists a point $\hat{x} \in X$ such that

$$\langle T(\hat{x}), \hat{x} - x \rangle \leq 0$$
 for all $x \in X$.

As in [4, 5, 7], we can further generalize Theorem 1 in more general settings, e.g. in complex locally convex spaces or to a multimap T with upper semicontinuity or lower semicontinuity.

As an application of Theorem 1, we prove a generalization of the Schauder-Tychonoff fixed point theorem.

THEOREM 2. Let X be a paracompact bounded convex subset of a locally convex Hausdorff topological vector space E and D be a nonempty compact subset of X. Let $f: X \to E$ be a weakly continuous mapping (i.e. for each $p \in E^*$, $p \circ f$ is continuous) such that for each $x \in X$, $f(x) \in cl [x + \bigcup_{\lambda > 0} \lambda(X - x)]$. Suppose further that for all $x \in X \setminus D$ and $p \in E^*$,

(*) if
$$p(y - f(y)) > 0$$
 then $p(y - x) \le 0$.

Then there exists a point $\hat{x} \in X$ such that $f(\hat{x}) = \hat{x}$.

PROOF: Suppose that $x - f(x) \neq 0$ for all $x \in X$. Then for each $x \in X$, there exists at least one linear functional $p \in E^*$ such that p(x - f(x)) > 0. Now let $U(p) = \{x \in X \mid p(x - f(x)) > 0\}$ for each $p \in E^*$. Since f is weakly continuous, each U(p) is an open subset of X and for each $x \in X$, $x \in U(p)$ for some $p \in E^*$. Therefore $\{U(p) \mid p \in E^*\}$ is an open covering of the paracompact set X, so that there exists an open locally finite refinement $\{V(p) \mid p \in E^*\}$ of $\{U(p) \mid p \in E^*\}$. Let $\{\beta_p \mid p \in E^*\}$ be the subset of U(p) is partition of unity subordinated to this refinement.

Now we define a mapping $T: X \to E^*$ by

$$T(x) = \sum_{p \in E^*} eta_p(x) p \quad ext{for each } x \in X.$$

Then for each $x \in X$, by the local finiteness of $\{V(p) \mid p \in E^*\}$, there exist $\{p_1, \ldots, p_n\} \subset E^*$ such that

(1)
$$\langle T(x), x - f(x) \rangle = \sum_{p \in E^*} \beta_p(x) p(x - f(x))$$
$$= \sum_{i=1}^n \beta_{p_i}(x - f(x)) > 0.$$

Now we shall show that T satisfies the whole hypotheses of Theorem 1. To show that T is continuous from the relative topology of X to the strong topology of E^* , let $(x_{\alpha})_{\alpha \in \Gamma}$ be a net in X which converges to $x_0 \in X$. Since $\{V(p) \mid p \in E^*\}$ is locally finite, there exist an open neighborhood U of x_0 in X and finite members of $\{V(p) \mid p \in E^*\}$ such that $x_0 \in U \cap V(p_1) \cap \cdots \cap V(p_n) \neq \emptyset$. Then $U_0 := U \cap V(p_1) \cap$ $\cdots \cap V(p_n)$ is an open neighborhood of x_0 in X. Since (x_{α}) converges to x_0 , there exists $\alpha_0 \in \Gamma$ such that for any $\alpha \in \Gamma$ with $\alpha \geq \alpha_0$, $x_{\alpha} \in U_0$. Therefore for any $\alpha \in \Gamma$ with $\alpha \geq \alpha_0$ and B any bounded subset of E,

$$\begin{vmatrix} \sup_{y \in B} \langle T(x_{\alpha}) - T(x_{0}), y \rangle \end{vmatrix} = \left| \sup_{y \in B} \left[\sum_{i=1}^{n} (\beta_{p_{i}}(x_{\alpha}) - \beta_{p_{i}}(x_{0})) p_{i}(y) \right] \right| \\ \leq \sum_{i=1}^{n} \left| \sum_{p \in B} p_{i}(y) \right| \left| (\beta_{p_{i}}(x_{\alpha}) - \beta_{p_{i}}(x_{0})) \right|.$$

Since $p_i \in E^*$ and B is bounded, by Theorem 1.18 [6], there exists M > 0 such that $|\sup_{y \in B} p_i(y)| < M$ for all i = 1, ..., n. For any $\varepsilon > 0$, since each β_{p_i} is continuous, we can find $\alpha_1 \in \Gamma$ such that $\sum_{i=1}^{n} |(\beta_{p_i}(x_\alpha) - \beta_{p_i}(x_0))| < \frac{\varepsilon}{M}$ for all $\alpha \ge \alpha_1$. Let $\alpha_2 \ge \max\{\alpha_0, \alpha_1\}$. Then for all $\alpha \in \Gamma$ with $\alpha \ge \alpha_2$,

$$\left|\sup_{\mathbf{y}\in B}\left\langle T(x_{\alpha})-T(x_{0}),\mathbf{y}\right\rangle\right|<\varepsilon,$$

so that $(T(x_{\alpha}))$ converges to $T(x_0)$ in the strong topology of E^* .

Finally, suppose that there exists $x_1 \in X \setminus D$ such that for some $y \in X$,

$$\langle T(y), y-x_1\rangle = \sum_{p\in E^*} \beta_p(y)p(y-x_1) > 0.$$

If $\beta_p(y) > 0$, then p(y - f(y)) > 0, so that by the assumption (*), $p(y - x_1) \leq 0$. Hence we have $\sum_{p \in E^*} \beta_p(y)p(y - x_1) \leq 0$, which is a contradiction. Therefore for each $x \in X \setminus D$, $\langle T(y), y - x \rangle \leq 0$ for all $y \in X$. Hence by Theorem 1, there exists a point $\hat{x} \in X$ such that

(2)
$$\langle T(\hat{x}), \hat{x} - y \rangle \leq 0 \text{ for all } y \in X.$$

By the assumption, since $f(\hat{x}) \in cl [\hat{x} + \bigcup_{\lambda>0} (X - \hat{x})]$, there exists two nets $(y_{\alpha}) \subset X$, $(\lambda_{\alpha}) \subset R^+$ such that $(\hat{x} + \lambda_{\alpha}(y_{\alpha} - \hat{x}))$ converges to $f(\hat{x})$. Then by (2), we have

$$egin{aligned} \langle T(\hat{x}), \hat{x} - f(\hat{x})
angle &= \lim_{lpha} \left\langle T(\hat{x}), \hat{x} - (\hat{x} + \lambda_{lpha}(y_{lpha} - \hat{x}))
ight
angle \ &= \lim_{lpha} \left\langle T(\hat{x}), \lambda_{lpha}(\hat{x} - y_{lpha})
ight
angle \ &= \lim_{lpha} \lambda_{lpha} \cdot \left\langle T(\hat{x}), \hat{x} - y_{lpha}
ight
angle \leq 0, \end{aligned}$$

which contradicts to (1). This completes the proof.

Theorem 2 generalizes the classical Schauder-Tychonoff fixed point theorem and Halpern's generalization in several aspects.

Finally, as remarked before, we can also generalize Theorem 2 in more general settings (see [8]).

References

- F.E. Browder, A new generalization of the Schauder fixed point theorem, Math. Ann. 174 (1967), 285-290.
- [2] _____, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. 177 (1968), 283-301.
- [3] X.P. Ding, W.K. Kim and K.-K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. (in press).
- [4] C. Horvath, Some results in a multivalued mappings and inequalities without convexity, in "Nonlinear and Convex Analysis," Lecture Notes in Pure and Appl. Math. Series Vol. 107, Springer-Verlag, 1987.
- [5] S. Park, Variational inequalities and extremal principles, J. Kor. Math. Soc. 28 (1991), 45-56.
- [6] W. Rudin, "Functional Analysis," McGraw-Hill, Inc., 1973.
- [7] K.-K. Tan, Comparison Theorems on minimax inequalities, variational inequalities and fixed point theorems, J. London Math. Soc. 28 (1983), 555-562.
- [8] W.K. Kim and K.-K. Tan, A variational inequality in non-compact sets and its applications, to appear.
- M.-H. Shih and K.-K. Tan, Minimax inequalities and applications, Contemp. Math. 54 (1986), 45-63.

Department of Mathematics Education Chungbuk National University Cheongju, 360-763, Korea

44