A Cyclization of Alkynes from Tripledecker Sandwichcomplexes

트리플 데카 착물에서부터 Alkynes의 고리화 반응

  • Uhm Jae-Kook (Department of Chemistry, Keimyung University) ;
  • Park Young-Bae (Department of Chemistry, Keimyung University) ;
  • Byun Sang-In (Department of Chemistry, Keimyung University) ;
  • Lee Hyuk (Department of Chemistry, Keimyung University) ;
  • Kwak Young-Woo (Department of Chemistry, Kyungpook National University) ;
  • Kim Tae-Jeong (Department of Industrial Chemistry, Kyungpook National University)
  • Published : 1991.08.20

Abstract

A tripledecker sandwichcomplex, bis(${\eta}^5$-cyclopentadienyl)-${\mu}$-(${\eta}^6$-2,3-dialkyl-1,4-dimethyl-1,4-dibora-2,5-cyclohexadiene)dicobalt 1 was synthesized as a starting material. By the reaction of compound 1 with the excess 3-hexyne two kinds of sandwichcomplexes, cyclopentadienyl(${\eta}^6$-2,3-dialkyl-1,4-dimethyl-1,4-dibora-2,5-cyclohexadiene)cobalt 2 and cyclopentadienyl(${\eta}^6$-hexaethyl benzene)cobalt 3 were separated. The complex 3 was decomposed during purifying at RT to give a cyclization product of 3-hexyne, hexaethyl benzene.

트리플 데카 착물, bis(${\eta}^5$-cyclopentadienyl)-${\mu}$-(${\eta}^6$-2,3-dialkyl-1,4-dimethyl-1,4-dibora-2,5-cyclohexadiene)dicobalt 1을 합성하고, 이것을 출발물질로 하여 여기에 3-hexyne을 과량으로 반응시켰더니 두 종류의 sandwich 착물인 cyclopentadienyl(${\eta}^6$-2,3-dialkyl-1,4-dimethyl-1,4-dibora-2,5-cyclohexadiene)cobalt 2와 cyclopentadienyl(${\eta}^6$-hexaethyl benzene)cobalt 3가 분리되었다. 착물 3은 실온에서 정제하는 동안 분해하여 3-hexyne의 고리화 반응 생성물인 hexaethyl benzene이 생성되었음을 확인하였다.

Keywords

References

  1. Neue Entwicklungen auf dem Gebiete der Chemie des Acetylens und des Kohlenoxyds W. Reppe
  2. Liebig Ann. Chem. v.560 W. Reppe;O. Schlichtung;K. Klager;T. Toepel
  3. Z. Naturforsch Teil B v.10 E. O. Fischer;Jira
  4. J. Inorg. Nucl. Chem. v.1 T. S. Piper;F. A. Cotton;G. Wilkinson
  5. Angew. Chem. Int. Ed. Engl. v.16 K. Peter;C. Volhardt;Russel L. Lillard III
  6. J. Am. Chem. Soc. v.99 Raymond L. Funk;K. Peter C. Vollhardt
  7. Angew. Chem. Int. Ed. Engl. v.23 K. Peter C. Vollhardt
  8. Angew. Chem. Int. Ed. Engl. v.18 K. Jonas;L. Schieferstein;C. Krueger;Y. H. Tsay
  9. Angew. Chem. Int. Ed. Engl. v.22 K. Jonas
  10. Angew. Chem. v.95 K. Jonas;E. Deffense;Habermann
  11. Chem. Ber. v.119 U. Koelle;B. Fuss
  12. Angew. Chem. v.97 H. Boennemann
  13. Synth. Inorg. Metall. Org. Chem. v.2 H. Werner;A. Salzer
  14. Angew. Chem. v.84 H. Werner;A. Salzer
  15. J. Organomet. Chem. v.65 H. Werner
  16. Angew. Chem. v.89 W. Siebert;W. Rothermel
  17. Angew. Chem. v.91 W. Siebert;W. Rothermel;C. Boehle;C. Krueger;D. J. Brauer
  18. Angew. Chem. v.94 M. W. Whitely;H. Pritzkow;U. Zenneck;W. Siebert
  19. Z. Naturforsch. Teil B v.40 T. Kuhlmann;W. Siebert
  20. Ph. D. Dissertation, Univ. Heidelberg T. Kuhlmann
  21. Angew. Chem. v.97 W. Siebert
  22. J. K. Uhm;W. Siebert
  23. Angew. Chem. v.70 M. Schuetze
  24. Z. Naturforsch., Teil B v.43 J. K. Uhm;H. Roemich;H. Wadepohl;W. Siebert
  25. J. Kor. Chem. Soc. v.34 J. K. Uhm;D. Hu;U. Zenneck;H. Pritzkow;W. Siebert
  26. Chem. Ber. v.95 J. F. Cordes
  27. Trans. Faraday Soc. v.19 N. V. Sidgwick
  28. NMR-Spectroscopy of Boron Compounds H. Noeth;B. Wrackmeyer
  29. Ph. D. Dissertation, Univ. Heidelberg J. K. Uhm