溶解氣體 分析用 氣體感應膜 이온選擇性 電極 (第 3 報). 새로운 管形 PVC膜 질산이온 選擇性 電極을 이용한 아질산이온의連續·自動化 定量

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (III). Continuous-Automated Determination of Nitrite Ion Using a New Tubular PVC Membrane Type of Selective Electrode Nitrate

  • 이흥락 (경북대학교 자연과학대학 화학과) ;
  • 윤종훈 (경북대학교 자연과학대학 화학과)
  • Lee Heung Lark (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Yun Jong-Hoon (Environmental Science Institute, Kyungpook National University)
  • 발행 : 1991.02.20

초록

새로운 管形 PVC膜 질산이온 選擇性 電極을 제작하여 그 性能을 조사하였다. 電極膜의 組成을 5${\%}$ aliquat-NO$_3$ 용액+ 32${\%}$ poly(vinyl chloride) + 63${\%}$ dibutyl sebecate로 하였을 때 전극의 感應特性이 최적이었으며, 이 때의 감응기울기는 58.5 ${\pm}$ 0.1 mV/decade, 檢出限界는 0.02mM, 感應時間 (t$_{99}$)은 25초이었다. 이 전극을 써서 아질산이온을 連續${\cdot}$自動化法으로 정량하였다. Recipient 용액은 pH 7.6의 10$^{-2}$ M 燐酸鹽 緩衝溶液을 쓰고, 여기에 酸化劑로서 過酸化水素를 0.3${\%}$가 되도록 포함시켰다. 전극계의 最適條件에서 아질산이온 標集溶液 8.0 ${\times}$ 10$^{-5}$ M ∼ 5.0 ${\times}$ 10$^{-2}$ M의 범위에서 직선적인 감응을 나타내었으며, 이 때의 감응기울기는 56.8 ${\pm}$ 0.2 mV/decade이었다.

A new tubular poly(vinyl chloride) membrane type of nitrate selective electrode was prepared and its characteristics were evaluated. The response slope, detection limit, and response time (t$_{99}$) under the optimum membrane composition (5${\%}$ aliquat-NO$_3$ solution + 32${\%}$ poly(vinyl chloride) + 63${\%}$ dibutyl sebecate) of the electrode were 58.5 ${\pm}$ 0.1 mV/decade, 2.0 ${\times}$ 10$^{-5}$ M, and 25 seconds, respectively. The nitrite ion was determined by the continuous-automated method using the new electrode. 10$^{-2}$ M phosphate buffer solution (pH 7.6) was used as a recipient solution. And also hydrogen peroxide (0.3${\%}$) was added to the recipient as an oxidant. The linear response range and response range and response slope for the standard nitrite solution under the optimum condition of this electrode system were 8.0 ${\times}$ 10$^{-5}$ M ∼ 5.0 ${\times}$ 10$^{-2}$ M and 56.8 ${\pm}$ 0.2 mV/decade, respectively.

키워드

참고문헌

  1. Anal. Chem. v.48 L. Snyder;J. Levine;R. Stoy;A. Conetta
  2. Anal. Chem. v.50 P. L. Bailey
  3. Analyst v.102 E. H. Hansen;A. K. Ghose;J. Ruzicka
  4. Anal. Lett. v.10 R. A. Durst
  5. Anal. Chem. v.52 M. E. Meyerhoff
  6. Anal. Chem. v.53 Y. M. Fraticelli;M. E. Meyerhoff
  7. Anal. Chim. Acta v.155 W. N. Opdycke;S. J. Parks;M. E. Meyerhoff
  8. Analyst v.110 H. L. Lee;M. E. Meyerhoff
  9. Anal. Chem. v.55 Y. M. Fraticelli;M. E. Meyerhoff
  10. J. Kor. Chem. Soc. v.33 H. L. Lee;J. H. Yun
  11. Clin. Chem. v.28 M. E. Meyerhoff;Y. M. Fraticelli;J. A. Greenberg;J. Rosen;S. J. Parks;W. N. Opdycke
  12. Advances in Environmental Sciences and Engineering v.4 Solubility Equilibria of the Nitrogen Oxides and Oxyacids in Dilute Aqueous Solution S. E. Schwartz;W. H. White
  13. Ion-Selective Electrode Rev. v.3 B. J. Birch;R. N. Cockeroft
  14. Anal. Chem. v.47 W. E. Morf;E. Lindner;W. Simon
  15. Bunseki Kagaku v.30 K. Suzuki;H. Ishiwada;T. Shirai;S. Yanakisawa
  16. J. Kor. Soc. Air Poll. Res. & Contr. v.1 Y. K. Lee;C. K. Kim;J. T. Park;K. S. Kim;K. J. Whang
  17. Anal. Chim. Acta v.131 P. Schulthess;Y. Shijo;H. V. Pham;E. Pretsch;D. Ammann;W. Simon
  18. Ion-Selective Electrode J. Koryta
  19. Anal. Chem. v.41 C. J. Coetzee;H. Freiser
  20. Anal. Chem. v.45 B. M. Kneebone;H. Freiser
  21. Anal. Chem. v.52 M. E. Meyerhoff