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The reaction path Smoluchowski equation approach developed in a recent work to calculate the rate constant for 

a diffusive multidimensional barrier crossing process is extended to incorporate the configuration-dependent diffusion 

matrix. The resulting fonnalism is then applied to the investigation of stilbene photoisomerization dynamics. Adapting 

a model two-dimensional potential and a model diffusion matrix proposed by Agmon and Kosloff \J. Phys. Chem., 

91 (1987) 1988], we derive an eigenvalue equlation for the relaxation rate constant of 사le stilbene photoisomerization. 

This eigenvalue equation is solved numerically by using the finite element method. The advantages and limitations 

of the present method are discussed.

Introduction

The photoisomerization of 纳“is-stilbene (see Figure 1) 

provides a useful model system for the investigation of reac­

tion dynamics occurring in condensed phases1-5. The elec­

tronically excited ^nzws-stilbene adiabatically crosses to the 

twisted form, that is often called the phantom state, through 

the thermally activated internal rot간ion, and this twisted 

stilbene rapidly decays to the ground electronic state by in­

ternal conversion, which subsequently relaxes to either the 

cis or trans isomer. Among these processes, the passage over 

barrier from the trans form to the phantom state is the rate 

determining step in the photoisomerization of Zraws-stilbene. 

This barrier crossing process, involving an internal rotation 

of the bulky phenyl group, experiences the frictional drag 

of solvent. To explain the dependence of the photoisomeriza­

tion rate on solvent viscosity, Kramers^s theory of chemical 

reaction6 has been often used1-5. Considering the one-dime­

nsional dynamics along the reaction coordinate, Kramers de­

rived an expression for the rate of reaction involving the 

crossing of a potential energy barrier under the thermal 

noise from the surrounding medium. According to his theory, 

the reaction rate is inversely proportional to the solvent vis­

cosity. But it has been found that this simple Kramers's 

theory prediction is not obeyed in many systems. In the 

case of stilbene photoisomerization, for example, a fractional 

viscosity dependence was observed1-2,

k= #exp(-W如 T) (1.1)

here Zt n and K are preexponential factor, solvent viscosity 

and barrier height, respectively. And a is typically between 

zero and unity. Possible factors that may result in the devia­

tion from Kramers's theory are non-Markovian effects1,5,7,8, 

complicated interrelation between the microscopic friction 

and macroscopic viscosity2, solvent variations of barrier hei- 

ghts9-11, and the multidimensional nature of the reaction 

system12, etc. Using a two-dimensional model potential, Ag­

mon and Ko이。砂 recently investigated the photoisomeriza­

tion dynamics of Znaws-stilbene and ascribed the fractional 
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dependence on solvent viscosity to the multidimensionality 

of potential energy surface. Their methodology relied on the 

direct numerical solution of the time-dependent Smoluchow­

ski equation.

Recently we have derived a theory for multidimensional 

barrier crossing processes occurring in highly viscous me­

dia14. The theory was based on a 앙。phisticatedly constructed 

reaction path Smoluchowski equation, and has several advan­

tages over previous theories. For example, the theory can 

deal with the effects of frictional anisotropy and reaction 

path curvature. The theory is also applicable to reaction in­

volving low potential energy barrier. However, the theory 

was developed for a restrictive case involving constant diffu­

sion matrix. In the present work, we extend the theory to 

incorporate the effect of configuration dependency of the dif­

fusion matrix. We then apply the proposed theory to the 

investigation of the stilbene photoisomerization dynamics.

This paper is arranged as Allows. In Sec. II, we describe 

the model potential and diffusion matrix used in the present 

work. In Sec. Ill, we summarize the reaction path Smolucho­

wski equation approach14, and extend the formalism to derive 

an eigenvalue equation for the relaxation rate constant for 

the isomerization reaction of stilbene which involves a confi­

guration dependent diffusion matrix. The numerical proce­

dure used to solve the eigenvalue equation is then detailed 

in Sec. IV. Finally, we present the computational results and 

discuss the advantages and limitations of the present app­

roach in Sec. V.

Model Potential and Diffusion Matrix

Agmon and Kosloff13 proposed several model two-dimen­

sional potential energy surfaces for ^raws-stilbene photoiso­

merization. Of which the one used in the present work has 

the following form:

V(0, 0) + W (2.1)

where

K(e, e) =V9(e, 0)(l + acos20)/(l + a) (2.2)

Ve(et 0)=Q0[3cos(29) 一 6cos(40)+cos(60) 一 4cos(0)]/8 (2.3)

(2.4)1%佃)=一 3Q»a)s(2e)/8.
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t - stilbene
Figure 1. The structure of fraws-stilbene.

of excited fraws-stilbene.

Here 0 i듢 the rotational angle around the double bond (see 

Figure 1). This is the reaction coordinate. 4)is the rotational 

angle of carbon-phenyl bond. Q。, and a are positive para­

meters. The potential profile along the reaction coordin가e 

0 with 0—0 has a w이 1 for the trans configuration (0=0) 

and a deeper well in the perpendicular configuration (0= 

土 n/2). The potential energy barrier between the two wells 

is located 가 0=0.26 n, and its height is 1.15 Qe relative 

to the bottom of the trans well. The potential provides 

a potential energy valley along the reaction coordinate. The 

steepness of this potential energy valley is modulated by 

the factor (l + acos24))/(H-a) in 8). The valley has the 

most gentle slope at the saddle point (0=0.26 n) for a>0, 

as can be seen in Figure 2.

We assume that the diffusion matrix is given by

Z橢(0)=Z)/S)T； D婉=D; D贓=I為8=0. (2.5)

The diffusion coefficient Dy associated with the carbon-phenyl 

bond rotation, is assumed to be independent of the solvent 

viscosity r\ and the coordinates (0, e), while the diffusion 

along the reaction coordinate 0 depends on the solvent visco­

sity and the orientation of the phenyl ring through the func­

tion /S) given by

/(<W=Yid + Y2)-1(l + y2cos2(|))T] (2.6)

where 为 and y2 are positive parameters. Accordingly, the 

diffusion coefficient for the reaction coordinate motion in­

creases by a factor of (1+丫2)as <f> varies to n/2.

Theory

Dynamics of reactions occurring in solution is influenced 

by the solvent friction. While the path of a gas-phase reaction 

on the potential energy surface (PES) is governed by the 

inertial anisotropy and PES characteristics, the path of a 

solution-phase reaction may also be altered by the frictional 

anisotropy. For reactions occurring in highly viscous medium, 

however, the inertal effects on the reaction dynamics are 

negligible. In such high friction regime, it is the forces due 

to friction and forces derived from the PES (rigorously 

speaking, the mean free energy surface) which determine 

the perferred path of reaction, and the stochastic motion 

of the reaction system on the PES can be described by the 

Smoluchowski equation1516:

零=囂[备碱뱨읎에釦 M (3.1)

Here F is the degrees of freedom that needs to be consi­

dered for describing the reaction dynamics. W("나, 0 is the 

probability density that the system has the configuration re­

presented by ｛為｝ at time t. Q為)is the diffusion matrix and 

V(｛xi\) is 나禮 potential energy. 8=1/如7、with the Boltzmann 

constant kB and the absolute temperature T.

As the reaction dynamics of gas-phase reactions is descri­

bed more conv은niently in a mass-weighted coordinate system 

which renders the inertial tensor isotropic, introducing a fric­

tion-weighted coordinate system simplifies the description 

of solution-phase reaction dynamics. In a coordinate system 

in which the friction tensor is isotropic, the reaction path 

is determined only by the PES characteristics. Based on this 

idea, we recently developed a rate theory for solution phase 

reactions14. When the diffusion matrix (£%) in Eq. (3.1) is 

diagonal and independent of position, the friction matrix (微 
related to the diffusion matrix Q가) by the relation

(§)=如7饱尸 (3.2)

is also diagonal; i.e., £話二普备诉 In such a case the friction-wei­

ghted coordinates are defined simply by

爲=母72在， (3.3)

and in the friction-weighted coordinate system the Smolu­

chowski equation, Eq. (3.1), reduces to

嘗=8、麝+,£ 으伊晋) (新)
We then define the diffusional reaction coordinate (DRC), 

corresponding to the intrinsic reaction coordinate (IRC) for 

gas-phase reaction17, by the steepest descent path from the 

saddle point. As the IRC is the path followed by the gas­

phase reaction system, starting from the saddle pohit and 

allowed to move with infinitely slow velocity to either of 

the reactant and product potential wells, DRC is the path 

followed by the reaction system in the high friction regime. 

The DRC concept will be useful unless the true reaction 

path bypasses the saddle point completely, as the IRC for 

gas-phase reactions is useful only in a corresponding situa­

tion.

For a system with F degrees of freedom, we have shown 

explicitly in Ref. 14 how to calculate the DRC and F-l normal 
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coordinates that describe vibrations orthogonal to the reac­

tion path. In terms of the됺e coordinates, the Smoluchowski 

equation given by Eq. (3.4) was transformed into a reaction 

path Smoluchowski equation (RPSE). The RPSE involves one 

special degree of freedom, i.e., the DRC which is the slowest 

variable unless the potential energy barrier is too low, and 

F-l harmonic modes which are the fast variables unless the 

frictional anisotropy or the potential energy characteristics 

are abnormal. This suggests approximations which formally 

eliminate the transverse degrees of freedom and thus yield 

a reduced equation of motion for only the DRC. This reduc­

tion enables one to save computing time enormously. Here 

we briefly review the main features of the derivation to make 

the present paper relatively self-contained.

In friction-weighted coordinate system (xj, the DRC, defi­

ned by the arc length s along a curve ({勿*(s)}), is determ­

ined by solving a system of differential equations,

譬7(쓰)*/唐(當):广 0=1，2,..5, (3.5) 

where the asterisk notation on the derivatives denot운s eva­

luation at ({并(s)}) and 기=± 1 depending on whether s lies 

before or after the saddle point s = 0. The nonreactive trans­

verse coordinates, (k = lf 2, •••, F~l)t at each point on 

the reaction path are determined by diagonalizing the pro­

jected force constant matrix18 K?,

m=(l—(l—E), (3.6)

where K- =(d2V/dxi dx； )„ 1 is 나le unit maxtrix, and P

is the projector whose element is

P*= (쯔) 쁪 37)

The diagonalization yields F— 1 nonzero eigenvalues, At Q = 

1, 2,…，F—l), and corresponding orthonormal eigenvectors, 

({1或(s)}) (k = l, 2…，F~ 1). The nonreactive normal coordi­

nates, are then given by羊 44 where di is the dis­

placement vector di—Xi—Xi，Constructing the reaction path 

coordinate system, {q, q2t …，Qf—i, Qf三 s} in this way, we 

can transform the Smoluchowski equation (3.4) into the reac­

tion path Smoluchowski equation (RPSE),

^-=kBTF^+F^V+ W(F2V) (3.8)

where Fi and F2 are complicated differential operators and 

their explicit forms have been listed in Ref. 14. Since the 

DRC is a minimum energy path17, we can approxim가e the 

potential along the reaction path as follows:

y({시)习鞭)+ 另 AM/2, (3.9)

*=1

First setting the probability density function W({qk}f 0 as

W({qk}f t) = 必({〈사)Z(s)厂匕 (3.10)

where is the equilibrium distribution function,

吟(0})=exp[-W°(s)— g 阳(汝洌， (3.11)

and then averaging over the nonreactive coordinates, one 

can reduce the RPSE, Eq. (3.8), to an eigenvalue equation 

for the relaxation rate constant 人:

网 + 啬뽒m 睥

-鞏55l+ ¥ -齢]*=。 (3.12)

The lowest nonzero eigenvalue for this eigenvalue equation 

can be identified with the relaxation rate constant unless 

the potential energy barrier is too low14.

For the stillbene photoisomerization dynamics the diffusion 

matrix, given by Eq. (2.5), is diagonal but depends on the 

configuration, so that the above procedure (hereafter, refer­

red as Case I) to obtain the relaxation rate constant X should 

be generalized and a more complicated coordinate transfor­

mation is necessitated. For simplicity, hereafter, the deriva­

tion will be presented specifically for the model two-dimen­

sional system devised for the frcws-stilbene photoisomeriza­

tion.

The friction matrix, related to the Effusion matrix by Eq. 

(3.2), may be derived from the Rayleigh dissipation funtion

(3.13)

For the model diffusion matrix given by Eq. (2.5), we 

have

尸=(&^ + S癖)/2 (3.14)

with Xi=0, &=&I、/D=< and & <心2).

We then transform the natural Cartesian-like coordinates 

(Ti, x2) into generalized friction-weighted coordinates 任、x2) 

according to

心= (Sf)】S, (3.15)

x2=郞d疫侦) (3.16)

Here is the value of & at the saddle point (rf, x|) [i.e., 

曰=</02=O)], and Afe) measures the variation of the fric­

tion coefficient & along x2：

△82)= &S)/& (3.17)

In this (rb x2) coordinate system, the Rayleigh dissipation 

funcion reduced to the form

F= 응(硏 + 君 (3.18)

so that That is, in the friction-weighted coordinate

system, the friction matrix becomes locally isotropic. Hence, 

as explained above, the preferred reaction path is again de­

termined only by the potential energy surface. We can then 

use the same procedure as described above for Case I to 

find the DRC s, the nonreactive normal coordinate q, and 

the freqency associated with the q motion. We may also ap­

proximate the potential energy surface along the reaction 

path by

V(s, g)习顼s)+Af/2 (3.19)

With the relations,
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으=急冨=(卧으 (3.20)

*= 쯔备=铲•으 (3.21)

the Sm이uchowski equation, Eq. (3.1), is transformed into 

the form

普噫弟7、辭 + t 으(噥)]

+ [航成쓰饗+尸般읋岑刊 (322)

Then using the relation between the friction-weighted coor­

dinates and the reaction path coordinates14,

쪼 =琮-玲迁 (3.23) 

we transform Eq. (3.22) to the RPSE

分w
茅 =kBT F2甲+F】归 + 甲(&卩)+如701矢3卬이呼*

(3.24)

Here F】,and F2 have the same expressions as for Case I14, 

and F3 is the new differential operator arising from the coor­

dinate dependence of the friction matrix:

f,= $溼스兰으— 室_任스^으+y 으』 
스 L 。堡 dqi 1 + Xf I 法 dqi & ds 丿」

払"/2 d
(3.25)

Again we assume that the probability density function 甲(s, 

q, t) have the following form,

W(s, q, £) = 必 (s, q)Z(成 세 (3.26)

Where 必 is the equilibrium distribution function,

Weq(s, q) = exp[- BH(s)- $0A(s质] (3.27)

Substituting Eq. (3.26) into Eq. (3.24), we obtain 

一也=普 p(i+xf)2'r-[7i+W-(K+lAy) 

…忒萨"点縛顶為泅까 

. 1 「 1 払* 为 沁「니2 ]

PAV2 1(14-Xf)2 ds (1 + xr)2 M r (3.28)

where prime denotes the differentiation with respect to s. 

For the given model potential for the stilbene photoisome- 

rization,为=〉3=0 because the reaction path is straight, and 

(d^rl/2/ds) — 0 because A is a function of q only A = A 

0)丄 Hence Eq. (3.28) reduces to

W= 罰#*+§ 心)까 329)

We then multiply Eq. (3.29) by |/|exp( —3A^2/2), where the 

metric \J\ is

1/1 = 1 昭, /)I = I as, 航)| i e鱼브초L |
J — ' a(s, q) * I。(為，X2) ' ' a(s, q) 1

=(实2尸电％ + 臨=(普 位)T2&/2 (3.30)

and integrate the resulting equation over q. The result is

Z"—他+嘉 A，｝z，+ 崂Z=0 (3.31)

Here, A, B and C are

A=^ ^A-vVexp(-pA^72) (3.32)

J -00

B=P d«A-1/2exp(-pV/2) (333)

J ~<x>

C= [ dq^U2exp( — PA^2/2) (3.34)

J -co

K(s) is given by

V0(s) = V(s, 0)=이:3cos(2ys) - 6cos(4ys)

+ cos(Gys) 一 4cos(ys)]/8—3QJ8, (335)

where y=(?i)~1/2. A(s) is given by

A«)=(器)队="K豹誓釦]X2=o

(3.36)

For the given mod이 diffusion matrix, and A are given 

by

曰=&(0)=YhK (337)

△(為)=[1+Y2cos2(r2)]/(1+丫2) (3.38)

We can 용et 妨=0 because the choice of origin is not impor­

tant. Since (dV/dx^x2^~0, (d^/dx^x^o— -2aVe(s, 0)/(a+l) 

+ 30/2 and A(0)-l, we obtain

A(s)= — K(s, 0)两：：订+ 礬 (3.39)

In order to obtain Af B and Ct we approximate A-172 and 

A1/2 up to (f order.

[△(g)]-1/2=｛1+ykos,板J加、/(1+Y2CQS&)/(1+%)]｝仍

习侦日臨妒 (3.40)

攻疣"三1一瓯巻页" (3.41)

By substituting Eq. (3.40) and Eq. (3.41) into Eqs. (3.32)-(334) 

and integrating over q, we obtain the following expressions 

for Ar B and C:

4 =[煮 + 2(ri^ w](崙广 342)

B=[l+还专云宠詞(針)'性 343)

足詞(轰广 (344)

Thus we finally obtain the following eigenvalue equation for 

the relaxation rate constant X:

z」曲+[嶽 + 忒爲濫日싸z
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+斌i- a聂 号如ar羸昂z=o (3-45)

This equation cannot be solved analytically. In the next sec­

tion we detail the numerical procedure to solve this equation.

Conputational Procedure

We solve Eq. (3.45) numerically by the finite element me­

thod (FEM)2L22 which is a very efficient 지gorithm for solving 

the eigenvalue problem. Here we briefly describe the main 

scheme to solve the Sturm-Liouville equation,

"(s)Z'(s) 丁 + AR(s)Z(s) = 0 (4.1)

(1) Put Eq. (4.1) into variational form as Allows

&Z=矿:ds｛P(s)IN(s)]2 - X R(s)[z(s) 了｝ = 0 (4.2)

(2) Discretize a full integral range into n small intervals se­

parated by a distance I with Si~a and sn + i =b . The 

interval [s*, s^+J is called k\h finite element. The in­

tegral above can be considered as 8Z=由8Z* with h 

being the integral over th은 feth element.

(3) In each element, Z(s) is assumed as Z(s)=Z*(y)=(l—顶Xp너' 
y(p+1. where y is the local normalized coordinate with s=

and 矿s are yet undetermined values at nodal points. 

With the assumed linear interpolation function 7* is directly 

integrated in each element Summing the resulting we 

obtain I which is a function of qj's, 1—1(^,(p2,…， 

By variational principle,矿s are determined by solving the 

following simultaneous equations.

-^- = 0, (k-1, 2,…，处+ D (4.3)

oqr

(4) Because of periodic boundary condition, (pw+1 —(p1, Eq. 

(43) can be represented in the matrix form, YX=KRX. 

Here X is an »X1 column matrix, (时, 苛,…하 矿)', 
and P and R are nXn matrices.

Here p' and r上 are given by

” = +/：她也+(，'一1)＞项 0=1, 2,…，n + 1) (4.4)

心尸기jo끼王+('—以+丿]顿)如 (i-l, 2,…, n-hl)

G，M二 1, 2) (4.5)

0i = l 一乂(拒=乂 (4.6)

(5) S이ving this m간rix eigenvalue equation, we get eigenva- 

lues X/ 0=0, n). This eigenvalue problem is solved

using standard numerical procedures available in IMSL23.

Of 나｝e eigenvalues ｛人；｝, the zero eigenvalue 入＜)correspo­

nds to the st간ionary solution, and unless the barrier height 

is too small, 사le lowest nonzero eigenvalue X i is well separa- 

ted from the other eigenvalues and can be identified with 

th든 r어axati이i rate constant for the barrier crossing reaction, 

人 1 드為서■知, where and kr are forward and backward
reaction rate constant, respectively24.

Result and Discussion
To test the efficiency and accuracy of the algorithm detai­

led in the previous section, we calculated the eigenvalues 

for a harmonic oscillator and for a model two-dimensional 

potential used by Larson and Kostin25. We find that setting 

the value of n equal to 100 yields numerical eigenvalues 

that are in good agreement with the analytical ones for the 

harmonic oscillator case and with the numerical ones for 

the Larson and Kostin potential up to fifth eigenvalue. Be­

cause only the lowest nonzero eigenvalue is important, this 

accuracy is sufficient for the present work.

As can be seen in Figures 3 and 4, the relaxation time, 

which is the inverse of the relaxation rate constant is 

지most proportional to the solvent viscosity for the potential 

parameters employed. This is the behavior predicted by the 

simple Kramerss r겄e expression. Figure 5 displays the ef­

fect of varying the parameter y2 in Eq. (2.6). As the parame­

ter 丫2 is increased, the reactive flux away from the DRC 

(认 at larger 0 angles) experiences smaller frictional retar­

dation. Accordingly, as the solvent viscosity increases, contri­

bution from this off-DRC flux will increase. This may result

~ pn+p1 

或 

0

-P1

伊+俨
~P2

0
或 
伊+伊

0
-俨

0 -pn -

0

p=

0
--pn 0

•

一广2

0
广2+广1 

-pn~l

0 
广】

，乌2 + 4
r12 
0

*2 0
4 0

• • 0 e -
0

R=

0
_ #2 0 0 0

废+右
0
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Figure 6. Variation of the r시axation time with the height of 

potential energy barrier. Values of model parameters used are 

Qo>=5.0 kBT, a=0.1, P=10 ns'1, n=2 cP-1, y2=4( and r\ = l 

cP.

8 10

rj in cP

Figure 3. Dependence of relaxation time on the solvent visco­

sity. V지바es of the potential and friction parameters used are 

Qe=Q,= 5 kBT, Z)=10 ns1, ”=2 cPf and 丫2=0.

Figure 4. Dependence of relaxation time on the solvent visco­

sity. Values of the potential and friction parameters used are 

Qo=Qe=2.5 如£ D= 10 ns-1, yi—2 cP'1, and y2—0.

0 
0 2 4 6

0 2 4 6 8 10

7)in cP

Figure 5. Effects of (^-dependence of diffusion coefficient. Va­

lues of model parameters used are Q=2.5 kBT, 0=1.0 kBT, 

a=0.0. D= 10 ns-1, and y】=2 cP-1

in the deviation from 나此 simple Kramers's prediction. How­

ever, inclusion of the 0-dependence of diffusion coefficient 

by varying the parameter y2 does not change the situation 

as can be seen from Figure 5. Thus, the results of the pre­

sent calculation does not support the conjecture of Agmon 

and Kosloff13 that the fractional viscosity dependence of 

figure 7. Variation of the relaxation time with the width of 

potential energy valley. Values of model parameters used are 

0=5.0 k^T, a=0.1, P=10 ns^1, yi = 2 cP-1, 丫2=4, and n = l cP.

fraws-stilbene photoisomerization is due to 난｝e multidimen­

sional nature of the reaction system. However, we cannot 

dismiss the possibility that failure to observe the fractional 

viscosity dependence of rate constant may be due partly to 

the limitations of the present formalism. In the present 

theory, the potential energy valley along the nonreactive 

transverse coordinate has been approximated to be parabolic 

and the frequency of the transverse well has been assumed 

to be large so that the probability density function retains 

the equilibrium distribution along the transverse coordinate. 

Therefore the dynamic effects associated with the transverse 

coordniate motion, which can be the major factor for the 

deviation from the Kramers^ theory, are considered only 

to a limited extent.

To investigate the effect of the potential energy surface 

characteristics, we also calculate the relaxation rate constant 

with varying parameters Qe, Q0, and a. Note that increasing 

the value of Q increases the height of the potential energy 

barrier, while increasing the value of Q narrows the poten­

tial energy valley along the reaction path. The parameter 

a modulates the steepness of the potential energy valley. 

As expected, the relaxation time increases exponentially with 

the increase in the barrier height; see Figure 6. On the other
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Rgure 8. Variation of the relaxation time with the potential 

parameter a. Values of model parameters used are 0=0,=5.0 

keTf D=10 ns-1, Yi=2 cP~\ 丫2=4, and cP.

hand, the relaxation time varies mildly with Q。and a; see 

Figures 7 and 8.

To conclude, the main advantage of the present method 

is that calculating the relaxation rate constant is far less 

time consuming when compared to the direct numerical me­

thod of Agmon and Kosloff13. Nevertheless, by computing 

the one dimensional eigenvalue equation, we can incorporate 

several major dynamic effects arising in multidimensional 

system to some extant. But application of the present method 

to the system having a potential energy surface that are 

too anharmonic along the nonreactive normal coordinates ap­

pears to be less satisfactory.
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