Abstract
The gas-phase pyrolysis reactions of iminoethers (Ⅱ), 2-alkoxypyridines (Ⅲ), 2-N-alkylated pyridones (Ⅳ) and N-alkylated acetamides (Ⅴ) have been studied MO theoretically with the AM1 method. The decomposition of these compounds proceeds by a concerted retro-ene process through a six-membered cyclic transition state. The reactivity decreases in the order (Ⅱ) > (Ⅲ) > (Ⅳ) > (Ⅴ), with a greater reactivity for the imine series, (Ⅱ) and (Ⅲ), compared to the amide series, (Ⅳ) and (Ⅴ), and a difference in basicity between the N and O atoms. Within a given series, however, the reactivity is dictated mainly by the aromaticity in the transition state. The reactivity order with respect to side alkyl chain of a species was found to increase as the steric crowding effect increases. The AM1 reactivity in this work agree well with the experimental results.