Abstract
The photophysical and photochemical properties of khellin were compared with those of 8-methoxypsoralen (8-MOP). Quantum yields of fluorescence and triplet formation decreases as solvent polarity increases, which is opposite to 8-MOP, and photocycloadditivity of khellin to olefins is much lower than that of 8-MOP. Electron ejection from khellin by laser flash was not observed, but observed from 8-MOP. As models of 4',5'-monoadducts of khellin or 8-MOP with thymine base, khellin<>dimethylfumarate 4',5'-monoadduct (KDF) was also compared with 8-MOP<>thymidine 4',5'-monoadduct (F-2) in those properties to give some insight on the second-step biadduct formation resulting in cross-links of DNA duplex. KDF and F-2 were very similar to khellin and 8-MOP in photophysical properties, respectively. However, KDF did not form adducts with various olefins, and thus it is thought that 2,3-double bond of chromone moiety in khellin is hardly reactive in contrast with 3,4-double bond of coumarin moiety in 8-MOP. These results indicate that khellin is fairly photostable compound, a poor type Ⅰ photodynamic sensitizer and producer of ${O_2}^{-}$ which is some cause of phototoxic erythemal reactions and undesirable side effects. Therefore khellin is safer to use than 8-MOP in photochemotherapy of some skin diseases. Although khellin is much less reactive than 8-MOP, khellin must be also a monofunctional drug. Since khellin is, however, as effective as 8-MOP in photochemotherapy of some skin diseases, it is suggested that khellin may be different from 8-MOP in the action mechanism.