Abstract
The electrochemical behavior and the complex formation between N$i^{2+}$ and 1,7-diazs-15-crown-5 and 1,10-diaza-18-crown-6 in acetonitrile solution have been studied by DC polarography, differential puke polarography and cyclic voltammetry. Nickel(Ⅱ) complexes gave a single well-defined wave. The formation constants of their complexes were 1$0^{4.89} and 10^{3.86}$, respectively. Nickel(Ⅱ) ion was found to form complexes of 1-to-1 composition with 1,7-diaza-15-crown-5 and 1,10-diaza-18-crown-6. In addition, reduction steps were irreversible and the reduction current were diffusion controlled. The electrochemical reduction mechanism of Ni(Ⅱ)-macrocyclic diaza-crown complexes in acetonitrile solution is estimated.