DOI QR코드

DOI QR Code

A Statistical Termodynamic Study of Phase Equilibria in Microemulsions

  • Kyung-Sup Yoo (Department of Chemistry, Seoul National University) ;
  • Hyungsuk Park (Department of Chemistry, Seoul National University)
  • Published : 1991.06.20

Abstract

To investigate the phase equilibria and structural properties of microemulsions, we study a simple phenomenological model on the basis of the cubic lattice cell with which the oil- and water-filled cells are connected one another, respectively. The surfactant is assumed to be insoluble in both oil and water, and to be adsorbed at the oil-water interface. The Schulman condition, according to which the lateral pressure of the surfactant layer is compensated by the oil-water interfacial tension, is found to hold to good approximation in the middle-phase microemulsion. Our results show that the oil- and water-filled domains in that microemulsion are about 50-150 $\AA$ across, and depend sensitively on the curvature parameters. The phase diagram is not symmetric in this model. It may be asymmetrized intrinsically by non-equivalency of oil and water. The two- and tree-phase equilibria including critical points and critical endpoints are found.

Keywords

References

  1. Emulsions: Theory and Practice P. Becher
  2. Nature v.152 J. H. Schulman;T. P. Hoar
  3. Soc. Ptrol. Eng. J. Oct. E. Ruckenstein
  4. J. Chem. Soc. Faraday Trans. II v.77 D. J. Mitchell;B. W. Ninham
  5. Microemulsions A. M. Bellocq;J. Biais;P. Bothorel;D. Bourbon;B. Clin;P. Lalanne;B. Lemanceau;I. D. Robb(ed.)
  6. Micellization, Solubilization and Microemulsion v.2 M. L. Robbins;K. L. Mittal(ed.)
  7. ACS Symposium Series 272 Macro-and Microemulsions M. K. Sharma;D. O. Shah
  8. Encyclopedia of Emulsions Technology v.1 S. E. Friberg;R. L. Vincent;P. Becher(ed.)
  9. J. Am. Chem. Soc. v.106 G. Mathis;P. Leempoel;J. Ravey;C. Selve;J. Delpuech
  10. J. Colloid Interface Sci. v.112 D. Guest;D. Langevin
  11. J. Colloid Interface Sci. v.67 E. Sjoblom;S. E. Friberg
  12. Phys. Rev. A v.29 M. Kotlarchyk;S. H. Chen;J. S. Huang;M. W. Kim
  13. J. Them. Phys. v.81 B. Widom
  14. J. Them. Pays. v.87 D. Alderman;M. E. Cares;D. Roue;S. A. Safran
  15. J. Pays. Them. v.92 T. P. Stockfisch;J. C. Wheeler
  16. Surfactant Science Series v.24 Microemulsion Systems C. Borzi;R. Lipowsky;B. Widow;H. L. Rosano(ed.);M. Clause(ed.)
  17. Surfactant Science Series v.30 Micromulsions and Related Systems M. Barrel;R. S. Schechter
  18. Phys. Rev. B. v.7 R. B. Griffiths
  19. J. Chem. Phys. v.69 Y. Talmon;S. Prager
  20. J. Phys. Chem. v.86 P. G. de Gennes;C. Taupin
  21. J. Physique v.43 J. Jouffroy;P. Levinson;P. G. de Gennes
  22. J. Disp. Sci. Tech. v.4 Y. Squeak
  23. J. Chem. Soc. Faraday Trans. II v.72 J. N. Israelachvili;D. J. Mitchell;B. W. Ninham
  24. J. Chem. Phys. v.91 M. Borkovec
  25. Phys. Lett. v.43a W. Helfrich
  26. J. Physique v.45 L. Auvray;J. P. Cotton;R. Ober;C. Taupin
  27. Chem. Rev. v.68 P. A. Winsor
  28. Faraday Dissc. Chem. Soc. v.65 J. T. G. Overbeek
  29. Phys. Rev. Lett. v.54 J. M. di Meglio;M. Dvolaitzky;L. Leger;C. Taupin