DOI QR코드

DOI QR Code

A Study on the Structure and Thermal Property of $Co^{2+}$-Exchanged Zeolite A

  • Jong-Yul Park (Department of Chemistry, Pusan National University)
  • Published : 1991.06.20

Abstract

Theoretical calculations on the stabilization energies of framework atoms in hydrolyses Co(Ⅱ )-exchanged zeolite A were made using some potential energy functions and optimization program. The protons which are produced by hydrolysis of $[Co(H_2O)_n]^{2+}$ ion in large cavity showed a tendency to attack the framework oxygen atom O(1) preferentially, and the oxygen atom O(4) within OH- ion was coordinated at Al atom. The weakness of bonds between T(Si, Al) and oxygen by attack of proton and too large coordination number around small aluminum atom will make the framework of Co(Ⅱ)-exchanged zeolite A more unstable. The stabilization energy of $Co_4Na_4$-A framework (- 361.57 kcal/mol) was less than that of thermally stable zeolite A($Na_{12-}$A: - 419.68 kcal/mol) and greater than that of extremely unstable Ba(Ⅱ)-exchanged zeolite A($Ba_{6-}$A: - 324.01 kcal/mol). All the data of powder X-ray diffraction, infrared and Raman spectroscopy of Co(Ⅱ)-exchanged zeolite A showed the evidence of instability of its framework in agreement with the theoretical calculation. Three different groups of water molecules are found in hydrated Co(Ⅱ )-exchanged zeolite A; W(Ⅰ) group of water molecules having only hydrogen-bonds, W(Ⅱ) group water coordinated to $Na^+$ ion, ans W(Ⅲ) group water coordinated to Co(Ⅱ) ion. The averaged interaction energy of each water group shows the decreasing order of W(Ⅲ)>W(Ⅱ)>W(Ⅰ).

Keywords

References

  1. Ztg. Keram. Runschau v.90 F. Wolf;H. Fuertig;Tonind
  2. J. Kor. Chem. Soc. v.33 J. Y. Park;Y. Kim;U. S. Kim;S. G. Choi
  3. J. Phys. Chem. v.91 M. S. Jhon;K. T. No;J. S. Kim;Y. Y. Huh;W. K. Kim
  4. J. Kor. Chem. K. T. No;M. S. Jhon
  5. ACS Symposium Series No. 135, Adsorption and Ion Exchange with Synthetic Zeolites Y. Kim;V. Subramanian;R. L. Firror;K. Seff
  6. Adv. Chem. Series v.101 E. m. Flanigen;H. Khtami;H. A. Szymanski
  7. J. Phys. Chem. v.89 P. K. Dutta;B. D. Barco
  8. J. Phys. Chem. v.93 R. A. Schoonheydt;I. Vaesen;H. Leeman
  9. J. Phys. Chem. v.93 R. Janssen;G. A. H. Tizink;W. S. Veeman;Th. L. M. Maesen;J. F. Van Lent
  10. J. Phys. Chem. v.79 P. E. Riley;K. Seff
  11. J. Cryst. Growth v.8 J. F. Charnell
  12. J. Phys. Chem. v.69 J. E. Hueey
  13. J. Phys. Educ. v.31 R. T. Sanderson
  14. Acta Crystallogr. v.B32 J. Gaillet;P. Claverie;B. Pullman
  15. J. Phys. Chem. v.76 M. J. Huron;P. Claverie
  16. AERE report R 7125 Fortran subroutines for minimization by quasi-Newton methods R. Fletcher
  17. J. Kor. Chem. Soc. v.33 J. Y. Park;Y. Kim;U. S. Kim;S. G. Choi
  18. J. Phys. Chem. v.82 R. L. Firor;K. Seff
  19. J. Catal. v.13 J. B. Uytterhoeven;R. A. Schoonheydt;B. V. Liengme;W. K. Hall
  20. Molecular Sieves C. K. Hersh
  21. J. Phys. Soc. Faraday trans v.69 P. A. Jacobs;J. B. Uytterhoeven
  22. J. Phys. Chem. v.75 O. Lahodny-Sarc;J. L. White
  23. Zeolite Chemistry and Catalysis, ACS Monograph v.171 J. A. Rabo
  24. J. Phys. Chem. v.81 W. M. Butler;C. L. Angell;W. Mcallister;W. M. Risen, Jr.
  25. J. Phys. Chem. v.93 J. Gobder;M. D. Baker;G. A. Ozin
  26. Chem. Tech. v.18 F. Wolf;H. Fuertig;V. Haedicke
  27. Russ. J. Phys. Chem. v.47 A. A. Kubasov;K. V. Topchieva;A. N. Ratov
  28. Zeolites v.8 P. K. Dutta;D.C. Shieh;M. Puri
  29. J. Chem. Soc., Chem. Commun. P. K. Dutta;B. D. Barco
  30. J. Phys. Chem. v.92 P. K. Dutta;B. D. Barco
  31. Zeolites v.3 F. Roozeboom;H. E. Robson
  32. Thesis of Ph. D., Pusan National University S. G. Choi
  33. J. Phys. Chem. v.91 P. K. Dutta;M. Puri
  34. J. Phys. Chem. v.90 N. H. Heo;W. Cruz-Patalinghung;K. Seff

Cited by

  1. Photofunctional host–guest hybrid materials and thin films of lanthanide complexes covalently linked to functionalized zeolite A vol.43, pp.7, 1991, https://doi.org/10.1039/c3dt52652f