DOI QR코드

DOI QR Code

Chain Ordering Effects in the Nematic-Isotropic Phase Transition of Polymer Melts

  • Han Soo Kim (Department of Chemistry, Seoul National University) ;
  • Hyungsuk Pak (Department of Chemistry, Seoul National University) ;
  • Song Hi Lee (Department of Chemistry, Kyungsung University)
  • Published : 1991.04.20

Abstract

A statistical thermodynamic theory of thermotropic main-chain polymeric liquid crystalline melts is developed within the framework of the lattice model by a generalization of the well-known procedure of Flory and DiMarzio. According to the results of Vasilenko et al., the theory of orientational ordering in melts of polymers containing rigid and flexible segments in the main chain is taken into account. When the ordering of flexible segments in the nematic melt is correlated with that of rigid mesogenic groups, the former is assumed to be given as a function of the ordering of rigid mesogenic cores. A free energy density that includes short-range packing contributions is formulated. The properties of the liquid-crystalline transiton are investigated for various cases of the system. The results calculated in this paper show not only the order-parameter values but also the first-order phase transition phenomena that are similar to those observed experimentally for the thermotropic liquid-crystalline polymers and show the transitional entropy terms which actually increase upon orientational ordering. In the orientational ordering values, it is shown that mesogenic groups, flexible segments, and gauche energy (temperature) may be quite substantial. Finally, by using the flexibility term, we predict the highly anisotropic mesophase which was shown by Vasilenko et al.

Keywords

References

  1. Macromolecules v.14 R. R. Matheson;P. J. Flory
  2. Proc. R. Soc. London. Ser. A v.234 P. J. Flory
  3. Proc. R. Soc. London. Ser. A v.234 P. J. Flory
  4. Macromolecules v.17 S. V. Vasilenko;A. R. Knokhlov;V. P. Shibaev
  5. Macromol. Chem. v.183 A. Roviello;A. Sirigu
  6. J. Polym. Sci. Polym. Lett. Ed. v.20 W. Krigbaum;J. Asrar;H. Toriumi;A. Ciferri;J. Preston
  7. Abstracts of the First All-Union Symposium in Liquid-Crystalline Polymers B. Z. Volchek;N. S. Kholmuradov;A. V. Purkina;V. P. Stadnik;A. Yu. Bilibin;S. S. Skorokhodv
  8. Mol. Phys. v.36 R. E. Boehm;D. E. Martire
  9. Macromolecules v.19 R. E. Boehm;D. E. Martire;N. V. Madhusudana
  10. Macromolecules v.5 A. Blumstein;O. Thomas
  11. Macromolecules v.16 W. R. Krigbaum;J. Watanabe;T. Ishikawa
  12. Macromolecules v.16 G. Sigaud;D. Y. Yoon;A. C. Griffin
  13. J. Chem. Phys. v.35 E. A. DiMarzio
  14. J. Chem. Phys. v.55 A. Wulf;A. G. Derocco
  15. J. Chem. Phys. v.52 M. A. Cotter;D. E. Martire
  16. Phys. Rev. v.A10 M. A. Cotter
  17. Macromolecules v.16 A. F. Martins;J. B. Ferreira;F. Volino;A. Blumstein;R. B. Blumstein
  18. Macromolecules v.17 E. T. Samulski;M. M. Gauthier;R. B. Blumstein;A. Blumstein
  19. Macromolecules v.18 S. Bruckner;J. C. Scott;D. Y. Yoon;A. C. Griffin
  20. J. of Appl. polymer Sci. v.29 H. Hoshino;J. -I. Jin;R. W. Lenz