DOI QR코드

DOI QR Code

MO Theoretical Studies on the Benzylic and Resonance Shunt Effects

  • Published : 1991.04.20

Abstract

The reactions of aniline with benzyl and phenacyl compounds are studied by the AM1 method. Two types of modeling were adopted: Cation-neutral, in which a proton is attached to the leaving group F and anion-neutral model, in which aniline was replaced by phenoxide with Cl as the leaving group. The cation-neutral model represented the reactvery well, reproducing the various solution-phase experimental results. In the benzyl system, the ${\pi}$-electrons of the two rings (X-ring in the nucleophile and Y-ring in the substrate) interact conjugatively in the transition state (TS) resulting in a bond contraction of the $C_{\alpha}-C_{Y1}$ bond (benzylic effect), whereas in the phenacyl system the ${\pi}$ electrons of the X-ring delocalizes more efficiently into the carbonyl group than into the Y-ring (resonance shunt effect) with a bond contraction of the $C_{\alpha}-C_{\beta}$ bond. The bond contraction in the benzylic effect was substantially greater than that in the resonance shunt effect. The TS was rather loose for benzyl while it was tighter for phenacyl system. Various bond length changes with substituents in the TS were, however, found to be irregular.

Keywords

References

  1. J. Comput. Chem. v.11 Determination of Reactivity by MO theory I. Lee;C. K. Kim
  2. Solvolytic Displacement Reactions A. Streitwieser, Jr.
  3. The PMO Theory of Organic Chemistry M. J. S. Dewar;R. C. Doughterty
  4. J. Chem. Soc., Perkin Trans. v.2 I. Lee;S. C. Sohn;C. H. Kang;Y. J. Oh
  5. J. Chem. Soc., Perkin Trans. v.2 I. Lee;Y. H. Choi;H. W. Lee;B. C. Lee
  6. Can. J. Chem v.57 K. C. Westaway;S. F. Ali
  7. J. Am. Chem. Soc. v.75 C. G. Swain;C. B. Scott
  8. J. Chem. Soc. Chem. Commun. J. F. King;G. T. Y. Tsang
  9. J. Chem. Soc. Chem. Commun. J. I. Lynas;C. J. M. Sterling
  10. J. Am. Chem. Soc. v.108 D. Kost;K. Aviram
  11. J. Am. Chem. Soc. v.111 T. L. Amyes;W. P. Jencks
  12. J. Chem. Soc. Chem. Commun. I. Lee;S. C. Sohn
  13. J. Am. Chem. Soc. v.109 I. Lee;H. K. Kang;H. W. Lee
  14. J. Chem. Soc., Perkin Trans. v.2 I. Lee;C. S. Shim;S. Y. Chung;H. Y. Kim;H. W. Lee
  15. J. Chem. Soc., Perkin Trans. v.2 I. Lee;C. S. Shim;S. Y. Chung;H. W. Lee
  16. J. Org. Chem. v.53 I. Lee;H. Y. Kim;H. K. Kang;H. W. Lee
  17. J. Chem. Soc., Perkin Trans. v.2 I. Lee;C. S. Shim;H. W. Lee
  18. J. Phys. Org. Chem. v.2 I. Lee;H. Y. Kim;H. W. Lee;I. C. Kim
  19. J. Chem. Soc. Perkin Trans. v.2 I. Lee;Y. H. Choi;K. W. Rhyu;C. S. Shim
  20. J. Chem. Soc. Perkin Trans. v.2 I. Lee
  21. Bull. Korean Chem. Soc. v.9 I. Lee
  22. Tetrahedron v.41 I. Lee;H. W. Lee;S. C. Sohn;C. S. Kim
  23. Tetrahedron v.42 I. Lee;S. C. Sohn;Y. J. Oh;B. C. Lee
  24. Bull. Korean Chem. Soc. v.8 I. Lee;C. S. Shim;S. Y. Chung;H. W. Lee
  25. J. Am. Chem. Soc. v.107 M. J. S. Dewar;E. G. Zoebisch;E. F. Healy;J. J. P. Stewart
  26. J. Phys. Org. Chem. v.2 C. Aleman;F. Maseras;A. Lledos;M. Duran;J. Bertran
  27. J. Chem. Soc. v.244 E. D. Hughes;C. K. Ingold
  28. Chem. Rev. v.69 A. J. Parker
  29. J. Am. Chem. Soc. v.106 F. Carrion;M. J. S. Dewar
  30. J. Am. Chem. Soc. v.96 J. I. Brauman;W. N. Olmstead;C. A. Lieder
  31. J. Am. Chem. Soc. v.99 W. N. Olmstead;J. I. Brauman
  32. J. Am. Chem. Soc. v.98 W. E. Farneth;J. I. Brauman
  33. J. Am. Chem. Soc. v.101 O. I. Asubiojo;J. I. Brauman
  34. J. Am. Chem. Soc. v.102 J. M. Jasinski;J. I. Brauman
  35. J. Am. Chem. Soc. v.92 D. K. Bohme;L. B. Young
  36. J. Chem. Soc. Chem. Commun. L. B. Young;E. Lee-Ruff;D. K. Bohme
  37. Can. J. Chem. v.54 K. Tanaka;G. I. Mackay;J. D. Payzant;D. K. Bohm
  38. J. Am. Chem. Soc. v.103 D. K. Bohme;G. I. Mackay
  39. Adv. Phys. Org. Chem. v.16 W. J. Albery;M. M. Kreevoy
  40. Structure and Mechanism in Organic Chemistry C. K. Ingold
  41. Theor. Chim. Acta v.14 G. Berthier;D. J. David;A. Veillard
  42. J. Am. Chem. Soc. v.92 C. Ritchie;G. A. Chappell
  43. J. Am. Chem. Soc. v.95 R. F. W. Bader;A. J. Duke;R. R. Messer
  44. J. Am. Chem. Soc. v.98 F. Keil;R. Ahlrichs
  45. Chem. Phys. Lett. v.44 P. Cremaschi;M. Simonetta
  46. J. Am. Chem. Soc. v.103 S. Wolfe;D. J. Mitchell;H. B. Schlegel
  47. J. Am. Chem. Soc. v.104 K. Morokuma
  48. Aust. J. Chem. v.32 E. R. Talaty;J. J. Woods;G. Simons
  49. J. Am. Chem. Soc. v.92 D. Holtz;J. L. Beauchamp;S. D. Woodgate
  50. J. Am. Chem. Soc. v.96 R. J. Blint;T. B. McMahon;J. L. Beauchamp
  51. J. Am. Chem. Soc. v.106 K. Raghavachari;J. Chandrasekhar;R. C. Burnier
  52. J. Chem. Soc. Chem. Commun. M. J. S. Dewar;A. J. Holder;E. F. Healy;J. J. P. Stewart
  53. Angew. Chem. Int. Ed. Engl. v.19 K. Muller
  54. J. Chem. Phys. v.80 S. Bell;J. S. Crighton
  55. Chem. Phys. Lett. v.10 A. Komornicki;J. W. McIver, Jr.
  56. J. Am. Chem. Soc. v.94 A. Komornicki;J. W. McIver, Jr.
  57. Theory and Practice of MO calculations on Organic Molecules I. G. Csizmadia
  58. Ph. D. Thesis, Queens University D. J. Mitchell
  59. J. Chem. Soc., Chem. Commun. I. Lee;H. J. Koh;B. -S. Lee;H. W. Lee
  60. Bull. Korean Chem. Soc. v.11 I. Lee;H. J. Koh;B. -S. Lee;H. W. Lee;J. H. Choi

Cited by

  1. Theoretical studies of the effects ofortho-methyl substitution onSN1 andSN2 processes at primary and secondary benzylic carbons vol.6, pp.9, 1993, https://doi.org/10.1002/poc.610060904
  2. Theoretical studies of the identity allyl transfer reactions vol.8, pp.7, 1995, https://doi.org/10.1002/poc.610080706