DOI QR코드

DOI QR Code

Interaction of Molybdenum Oxide with Titania : Raman Spectroscopic Study

  • Hack Sung Kim (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Sang Hoon Han (Department of Chemistry, College of Natural Sciences, Seoul National University) ;
  • Kwan Kim (Department of Chemistry, College of Natural Sciences, Seoul National University)
  • Published : 1991.04.20

Abstract

Laser Raman spectroscopy has been used to study the interaction of $MoO_3$ with $TiO_2$. The bulk molybdenum oxide appeared to spread on the surface of titania under the submonolayer coverage. The surface polymolybdate was observed to be very stable with respect to the repeated treatment of reduction and subsequent calcination. Owing to the interaction of molybdate and titania, the phase transformation of $TiO_2$ seemed to be strongly retarded. The additives such as Co and Ni reacted readily with $MoO_3$ to form the corresponding molybdate salts. Nevertheless, the polymolybdate species appeared to be more stable on the titania surface than the molybdate salts.

Keywords

References

  1. Proc. 9th Intern. Congr. on Catalysis, Calgary v.Ⅳ K. Segawa;D. S. Kim;Y. Kurusu;I. E. Wachs
  2. J. Catal. v.106 R. B. Quincy;M. Houalla;D. M. Hercules
  3. J. Phys. Chem. v.93 R. B. Quincy;M. Houalla;A. Proctor;D. M. Hercules
  4. J. Phys. Chem. v.94 R. B. Quincy;M. Houalla;A. Proctor;D. M. Hercules
  5. J. Phys. Chem. v.94 Y. Matsuoka;M. Niwa;Y. Murakami
  6. J. Phys. Chem. v.91 N. K. Nag
  7. J. Phys. Chem. v.90 M. I. Zaki;B. Vielhaber;H. Knozinger
  8. J. Catal. v.77 L. Wang;W. K. Hall
  9. J. Catal. v.80 G. L. Schrader;C. P. Cheng
  10. J. Catal. v.95 J. M. Stencel;L. E. Makovsky;J. R. Diehl;T. A. Sarkus
  11. J. Phys. Chem. v.90 J. Layrer;M. I. Zaki;H. Knozinger
  12. J. Raman Spectrosc. v.17 E. Payen;S. Kasztelan;J. Grimblot;J. P. Bonnelle
  13. J. Phys. Chem. v.91 E. Payen;J. Grimblot;S. Kasztelan
  14. Proc. 8th Intern. Congr. on Catalysis, Weinheim v.Ⅴ Y. Xie;L. Gui;Y. Liu;B. Zhao;N. Yang;Y. Zhang;Q. Guo;L. Duan;H. Huang;X. Cai;Y. Tang
  15. Adsorption and Catalysis on Oxide Surfaces Y. Xie;L. Gui;Y. Liu;Y. Zhang;B. Zha;N. Yang;Q. Guo;L. Duan;H. Huang;X. Cai;Y. Tang;M. Che(ed.);G. C. Bond(ed.)
  16. J. Catal. v.105 S. R. Stampfl;X. Chen;J. A. Dumesic;C. Niu;C. G. Hill, Jr.
  17. Surf. Sci. v.201 J. Leyrer;R. Margraf;E. Taglauer;H. Knozinger
  18. Appl. Surf. Sci. v.40 T. Hirata
  19. J. Phys. Chem. v.83 H. Jeziorowski;H. Knozinger
  20. Mat. Chem. Phys. v.13 J. Leyrer;B. Vielhaber;M. I. Zaki;S. Zhuang;J. Weitkamp;H. Knozinger
  21. J. Chem. Soc. Faraday Trans. 1 v.80 A. Jannibello;S. Marengo;P. Tittarelli;G. Morelli;A. Zecchina
  22. Appl. Spectrosc. v.27 A. Muller;N. Weinstock;W. Mohan;C. W. Schlapfer;K. Nakamoto
  23. J. Catal. v.92 K. Y. S. Ng;E. Gulari
  24. Pure Appl. Chem. v.56 J. Haber
  25. Angew. Chem. v.75 O. Glemser;H. G. Wendland
  26. Advanced Inorganic Chemistry F. A. Cotton;G. Wilkinson
  27. Pure Appl. Chem. v.48 G. D. Parfitt
  28. Bull. Kor. Chem. Soc. K. Kim;S. B. Lee

Cited by

  1. Synergistic effect of MoO3/TiO2 towards discrete and simultaneous photocatalytic degradation of E. coli and methylene blue in water vol.44, pp.2, 1991, https://doi.org/10.1007/s12034-021-02436-z