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A Method to Predict the Number of Clusters'
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ABSTRACT

The problem of determining the number of clusters, K, is the main objective of this study.
Attention is focused on the use of Rand(1971)" s C, statistic with some agglomerative clustering
algorithms(ACA) defined in the (B, m) plane in predicting the number of clusters within
the given set of data. The (k, Ci) plots for k=1, 2, -, N are explored by a Monte Carlo
study. Based on its performance, the use of C with the pair of ACA, (—.5, .75) and
(—.25, .0), is recommended for predicting the number of clusters present within a set
of data.

1. Introduction

In partitioning N individuals to be clustered into k groups for a set of p-dimensional multivariate
data, one may wish to find the best procedure to predict the number of distinct groups, K.
If a large body of data can be reduced to a relatively compact description, it may become the
basis for further statistical research.

Fowlkes and Mallows(1983) suggest useful and interpretable methods for exploring the number
of groups and comparing the results of clustering algorithms by using a similarity measure,
B., under some assumptions. They indicate that in comparing the original clustering of mixture
data with the clustering of perturbed data, the (k, B plots tend to peak at the k which is
equal to the true number of clusters, where k=1, 2, ---, K, ---, N. This stimulates the considera-
tion of applying Rand’s (1971) Ci for predicting the number of clusters present in a given set
of data.

Two similarity measures, Bi and Ci, are somewhat similar in construction and have the following
properties :

1. They depend on the matching martix, [n;], where i, j=1, 2, 3, -, k, and k=1, 2,

oo N;
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2. They lie between 0.0 and 1.0

3. They are 1.0 if the k clusters within each clustering correspond completely(except at k

=N);

4. They are 0.0 if every pair of objects that appear in the same cluster in one clustering

is assigned to different clusters in another clusterings.

Hence, the behavior of the measure C, for every k in some situations is examined to predict
the number of clusters for the given set of data. This will provide useful information on the
properties of different agglomerative clustering procedures.

Some notations which is useful for understanding a cluster, a clustering, an hierarchy and
an agglomerative clustering methods(ACM) can be found in DuBien and Warde(1987).

2. ACA and A Comparative Statistic

The application of an ACM requires that a measure of distance, d, be imposed on data points.
The measure of similarity or dissimilarity explicates “close”, initially 5 and the ACM reevaluates
.the “closeness” of clusters after each join. For the purpose of this study, the squared Euclidean
distance, which is only a semi-metric measure of distance, is considered since it is not as important
in determining the resultant clusterings as the algorithm of ACM is (DuBien and Warde, 1987).

Letting dj denote the joining distance between cluster Y and cluster V), where Y, Y, € Y%,
K=1, 2, -, N. Then Y»=Y, U Y, will denote tne new cluster within clustering Y*"'. It should
be noted that the joining distance, dj is always the smallest distance remaining in the set of
all distances between c.usters in clustering Y*.

For any clustering Y* in the hierarchy, if tha distances dy, du. and dj between pairs of clusters
Y. Y; and Y. are obtained rccursively frem clustering ¥*', K<N, then the distance between
the new cluster Y and any other cluster Vs € V* can be computed from the following formula
originally presented by Lance and Williams(1235, 1867) :

d(ij)k:(l; dik+aj d;k’i'B d.lj“{'ﬁ l dik"'djkl 5 (2. 1)

where d; denotes the distance between the clusters Y; and Y; with n; and n; elements, respecti-

vely, and o, o B, and w are specified parameters defining the particular member of the

family of ACA. :

Further, DuBien and Warde(1979) have explored the properties of the sequence of distances,
dan, by placing a suitable set of constraints on the parameters given in equation {2.1) and
derviving a two parameter family of ACA. Then equaticn (2.1) becomes

1—-B+2n 1—B—2n
do=r g 2B g g, (2.2)

where d;<dix<dj.

For more details on (B, n) family of ACA, refer to DuBien and Warde(1987).

For the present study, only nine ACA are chosen. The (B, n) values which define these
nine ACA are conveniently delineated in three groups of three algorithms as follows :

(1 B=0.0 with n=—0.5, 0.0, 0.5

(2) B=—0.25 with n=-—0.25. 0.0, 0.53
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(3) p=0.5 with n=—0.0, 0.25, 0.75.
ln (B, n) family, (.0, —.5) is known as single linkage ; (.0, .0) as average linkage ; (.0,
.5) as complete linkage ; (—.25, .0) or (—.5, .0) as flexible strategy.

It is known that two distinct clustering methods often produce two quite different clusterings
from the same set of data, depending on the structure within the data. However, if the results
of several different clustering procedures agree closely, then one may have more confidence
in the reality of any group structure which is indicated by several clustering procedures as mentio-
ned by Gordon(1981).

Rand’s (1971) C statistic measures the similarity between two clusterings derived from any
source. Further, a computational form for the C derived from an incidence matrix is given.
If the clusters within each clustering are arbitrarily numbered and n; represents the number
of data points simultaneously in the i-th cluster of Y and the j-th cluster of Y, then

N 1
’ 2 ) T EZ ( Z nij)2+ Z (Z nij)2]+ Z nij2
i i j 1 L]

c, V0= N (2.3)
H

In this formulation, if two different clustering algorithms are applied to the same set of data
and the clusters within each clustering are similar, the values of C(Y, Y‘) might be close to
1. Also, C(Y, Y) =0 when the two clusterings have no similarities.

In this study, the examination of the behavior of C for changing k is of interest in some
situations. Thus, C will be represented as Ci(Y, Y*), which is the similarity measure between
one clustering Y and another clustering Y° having the same number of clusters, k, resulting
from two different ACA applied to the same set of N data points, where k=1, 2, 3, ---, N.

Then three observations concerning the C. statistic will suffice for the purpose of this
study :

1. The closer C. is to 1.0, the more similar are the two clusterings ;

2. If C(Y, Y)>CAY, Y), then Y and Y are more similar than Y and Y*;

3. If CY, Y)>Ci(Y, Y and C(Y, Y)>Cir:(Y, Y°), then C. is the local maxium for

given k for the two clusterings.

3. Monte Carlo Experiments
3.1 Design of a Comparative Study

A clustering method is purported to be a functional mechanism for finding or retrieving the
“natural” structure within data. Hence, the degree to which a clustering method “retrieves”
the structure within generated data is an important characteristic of the clustering method. Moreo-
ver, if two different ACM are applied to the same set of data, the degree to which the two
retrieved structures correspond to each other through their resultant clusterings is another charac-
teristic to be considered. This characteristic could be thought of as the “agreement” between
two ACM for any specific number of clusters for given set of data.

Let Y represent the “true” structure of the data. Let Y and Y~ denote the two different
clusterings which result from applying two different ACM to the same N data points. Then C.(y,
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Y*) is a measure of the “retrieval” ability of the ACM to the true structure generated, while
CY*, Y') is a measure of the “agreement” between the two ACM through their resultant
clusterings for k=2, 3, -+, K, -+, N—1.

Some of the possible structural parameters considered in this comparative study are defined
as follows -

1. N, the number of data point in X

2. p, the number of variables defining each data points ; i.e., the dimensionality of the Eucli-

dean p-space in which X is embedded ;

3. The noise(i.e., p for MVN, or 6 for MVLN) within set of data

4. K, the number of populations from which the data points are generated ;

5. The types of population or the probability distribution from which each of the K populations

of data points are generated ;

6. The split or mv,» k=1, 2, ---, K, the size of cluster generated from each population of

data points ;

7. The distance, 8« between mean vectors for MVN, or median vectors for MVLN.

For the purpose of this study, the probability distribution for each of the K populations generated
is fixed to be multivariate normal(MVN) and lognormal(MVLN). The subroutine GGNSM from
the IMSL(International Mathematical and Statistical Library) is used to generate data. Genera-
tions of the MVN and the MVLN populations will be discussed in detail.

3.2 MVN case

For the convenience, N=60, p=2, and K=3 in this study. Then a brief summary of data
structure may be outlined as follows :
X;"'BVN(mk, Z)
where . i=1, 2, -+, 60 with split into the K=3 populations of either 20—20—20 or 30—20—
105
m. k=1, 2, 3, is constrained by an equilateral triangle spatial configuration ;
- 85=8=4.0, 6.0, is the distance between mean vectors :

. 1.0 p
FEEZE 1_0) > p=0.0, 0.4, and 0.8.

3.3 MVLN case

As it is well-known, the application of techniques developed on multivariate normal distrbution
is often limited. Hence, the investigation on the use of Rand’s Ci to determine the number
of clusters by applying the ACM is extended to a skewed distribution, the multivariate lognormal
(MVLN).

Since an ACM is used to find the natural structure present in data, the data structure generated
should be reasonably well suited. The desire is to have MVLN data that has similar structure
to that constructed for MVN data.

Let X; be a random vector that follows N,(0, ) where

X=X Xoz -, Xip]‘ and set

Zp= {(Zy, Zos tcy Zip:]‘o
The transformation
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Zo=m; exp(Xy)» 3.0
is applied to obtain a lognormal variate Z, having
E(Z,) =&=m; exp(c¥/2),
VAR(Z,) =A*=m; exp(c?) (exp(c?) —1),
where m;, m:>0, is the median.
Then the correlation p;* between Z; and Z; with respect to the correlation p; in the N.(0, )
distribution is given by

. exp(pioo) —1
Pi- = [explc®) —11“2 Lexp(cp) — 11"

Thus to cbtain a specified correlation p;* between Z: and Z;, the corresponding correlation p;
is

1
Pi= o.io_jlﬂ{l"‘ pij’ [exp(csz) - 1]1/2 [exp(c,—z) - 1]1/2}.

It is possible that particular p;'s violate | p;| <1 or that the p;’s give a martix X that is not
positive definite(Johnson, 1987). In this study, the correlation p;* is set to 0.0 to provide for
any general o; and o; in many data sets. Instead of investigating the effect of correlation (or,
noise) between the two variables, the angle, 8, used to set the spatial configuration of data
points for each of the population median vectors was varied. Difference in angle by rotating
the equilateral triangle would be interpreted in terms of noise(or, perturbation) in the data
structure generated from MVLN distribution since the shape of the data structure generated
depends on the median vectors which are also dependent on the degree of rotation.

Since a similar data structure which was used for the MVN data is desired, N, p, and K
are fixed to be the same as in the MVN study. Thus this study is limited to bivariate lognormal
distribution (BVLN) which could be extended to MVLN distribution.

It should be mentioned that the mean vector, &, was considered to set the data points for
each population with fixed median vector, m. However, a large number of the data points overlap-
ped within the area below the fixed median vectors with skewed-right and long positive tail
data regardless of & where &>m>0. Intuitively, the application of a clustering method was
not reasonable even for large differences among the mean vectors. However, the use of the
median vector to locate the data points for each population did not suffer from this problem.

Moreover, the variance depends on the median when ¢ is fixed. The variance of Z; increases
rapidly as the median increases. A large portion of the data points which were generated with
a large median always overlapped with another population generated with a small median because
of the large difference in the variances. Even if the distance among the median vectors set
for the different populations was large, the same type of data structure was obtained. At this
point, a reasonable data structure for an application of clustering methods could not be obtained
without controlling the variance. The variance for a BVLN random variate Z;, is

A2=m? exp(c?) (exp(c?) —1).

Let A; be 1.0 where the median m; is specified for each population of data points. By solving
the equation,
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o2+ Inlexp(c® —1]+2 In(m) =0.0, (3.2)

o2 was obtained to generate BVN with specified variance and hence a BVLN with variance 1.0
with specified median. Thus & decreases rapidly as the median increases. In addition, the shape
of data structure generated for BVLN is close to normal (Johnson and Kotz, 1970) for any specified
median if o? is small, which in this study is a consequence of the choice of a large value for
the median. Since the shapes of the distribution of the data points for each population differ
from each other as a function of the median vectors, the size of the cluster (split) might effect
the “retrieval” ability and “agreement” for unequal sized cluster.

Hence BVLN vectors for each population are generated by solving the equation (4.2) for fixed
constant values of the median vectors. And the transformation (4.1) is applied to BVN vectors
obtained from a population having a mean vector of zero with specified variance-covariance matrix.
Since the number of data points in each population effect the retrieval ability of clustering algori-
thms, the number of data points is designated for each population generated at the median
vectors as -

(D m at(l, 1,

(2) n, at(1+8 cos(®), 1+8 sin(8)),

(3) m at(1+8 cos(6+60), 1+8 sin(6+60)).

The data structure for the comparative study may be outlined as follows -
Z~BVLN(mi., v),
where Z:={Zu, Zs, -+, Zwl, i=1, 2, ---, 60, with split into the K=3 populations of ni—n.—ns
(i.e., 20—20—20, 30—20—10, 30—10—20, -, 10—20—30);
‘m. k=1, 2, 3, is the median vector of each population ;
:8:=86=4.0, 6.0, is the distance between median vectors ;
TRSNTES ( 1.0 0.0 ), is the variance-covariance structure ;
0.0 1.0
1 9=15°, 30°, is the angle to set the spatial configuration between median vectors.

4. Analyses and Results

Observations and discussions from the comparative study on the use of C. were made with
respect to the ACA defined by (B, m) and the settings of the structural parameters (p, &, split)
for MVN and (8, &, split) for MVLN.

For each setting of the structural parameters, a value CY, Y*) is computed for each algorithm,
and C«Y*, Y") is computed for each pair of the 36 possible pairs of ACA in 100 replications
for all k=2, 3, *-, K, ---, N—1. Based on the 100 replications, ACi, the sample mean, and
STDC., the sample standard deviation of AC, values, k=2, 3, --*, N—1, are obtained. Further,
the percent(% ) of the replications, which is the number of times that C, satisfy the conditions,

CkﬂSCk and Ck+ 1< Ck’

for a known number of clusters, K, where k=2, 3, ---, K, ---, N—1, is obtained for nine
ACA and all possible pairs of them. Then, the % obtained by Ci(Y, Y*) for each of the nine
ACA quantifies how well an ACA “retrieves” the known structure. The % calculated by C(Y*,
Y”) for possible pairs of ACA quantifies how well two ACA in each pair agree to each other
through their resultant clusterings giving a local maximum at the specified number k. And the



168 Scong-San Chae and William D. Wardc

Table 1. Percent Retrieval of true Population for All Algonthms on MVN

split  20—20—20 30—20—10
(8. =) 5\p 0 .4 .8 0 .4 .8 AVG%
(.o, —.5) 4.0 13 9 36 19 14 62 25.5
6.0 67 74 73 64 71 69 69.7
.o, .0 4.0 63 68 59 72 65 50 62.8
6.0 87 87 86 8 88 87 86.3
.o, .5 4.0 72 73 56 76 73 50 66.7
6.0 93 92 91 91 94 90 91.8
(—.25 —.25) 4.0 77 74 73 81 77 72 75.7
6.0 96 94 92 95 95 88 93.3
(—.25, .0) 4.0 81 81 81 %0 8 75 82.8
6.0 98 99 98 9% 96 93 96.7
(—.25, .5) 4.0 83 88 89 8 81 &4 85.0
6.0 93 94 98 9% 97 95 95.5
(~.5, .0) 4.0 85 84 91 84 8 69 83.2
6.0 100 98 97 9% 97 95 97.2
(—.5, .25) 4.0 88 87 89 8 83 78 84.7
6.0 100 100 100 9% 99 97 98.7
(~.5, .75) 4.0 79 78 88 78 83 72 83.0
6.0 99 100 99 95 95 95 97.2
Table 2. Precent retrieval of True Population for All Algorithms on MVLN
split  20-20-20 30-20-10 20-10-30 20-30-10 30-10-20 10-20-30 20-30-20
@B, m AVG%
8/6  15° 30° 15° 30° 15° 30° 15° 30° 15° 30° 15° 30° 15° 30°
(.0, 4.0 18 21 17 21 17 20 25 24 15 22 23 22 27 34 21.9
—.5) 6.0 48 50 43 43 47 41 53 46 45 46 54 44 53 52 47.4
(.0, 4.0 47 53 50 49 53 45 53 47 56 35 53 57 58 57 50.9
.0) 6.0 76 72 75 75 77 72 77 72 67 72 8 76 82 83 75.8
(.o, 4.0 55 55 62 60 54 59 58 62 64 52 71 67 59 66 60.8
.5) 6.0 79 78 84 8 80 71 83 8 82 79 79 8 83 91 81.8

(—.25, 4.0 73 63 65 68 66 68 71 69 61 59 58 58 55 73 67.0
—.25) 6.0 84 82 8 83 80 77 83 8 83 83 88 8 92 89 83.5

(—.25, 4.0 76 73 65 66 74 74 78 77 73 61 78 82 74 82 73.8
—.0) 6.0 93 89 80 8 87 78 8 90 87 79 94 8 94 93 86.9
(~.25, 4.0 81 79 74 76 76 74 75 82 67 62 77 83 80 88 76.7
—.5) 6.0 89 87 86 8 89 84 87 92 86 82 96 91 95 95 89.1
(-.5, 4.0 82 8 72 69 8 8 8 8 77 71 84 87 8 89 81.9
~.0) 6.0 83 8 8 90 90 89 90 98 92 82 95 94 95 97 91.8
(-.5, 4.0 8 80 76 71 8 8 81 8 75 68 83 8 83 91 81.0
~—.25) 6.0 94 98 88 91 95 92 90 95 88 88 98 93 95 95 92.9
(-.5, 4.0 79 8 78 79 79 83 8 79 75 68 83 8 83 90 81.0

—.75) 6.0 96 91 86 81 93 9 94 95 82 87 93 94 97 92 91.0
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ACk

(a) 6=4.0, 20—20—20 sphit

ACk

(c) 5=6.0, 20—20—20 sphit

1 2 3 4 5 6 7 8 9 10
(b) 8=4.0, 30—20—10 sphit

ACk

(d) 8=6.0, 30—20—10 sphit

Fig. 1. Retrieval results of the nine ACA with p=_.0 on MVN
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(a) 6=4.0, 20—20—20 split

0.8

(c) 8=6.0, 20—20—20 split

0.8

(d) 8=6.0, 30—20-10 split

Fig. 2. Retrieval results of the nine ACA with 8=15 on MVLN
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% calculated by C«(Y’, Y"), which is the number of times that two ACA “estimates” the number
of clusters correctly, will be defined as %.. Finally, AVG% and AVG%,, the sample means
of the % and %. across all settings of the structural parameters are obtained for nine ACA
and possible pairs of them. In addition, STD%., the standard deviation of AVG %, is calculated
for all possible pairs of nine ACA.

Hence, AVG% and AVG % provide informations on how well the C, “retrieves” the true struc-
ture and “estimates” the specified number of clusters, respectively, across all settings of the
structural parameters.

Using the results given in tables 1—2 and figures 1—2, at first, the following conclusions
may be made for MVN and MVLN :

1) The single linkage algorithm at (.0, —.5) is different from all of the other ACA : i.e.,
the single linkage is the worst algorithm, in general, however the only good algorithm
for high noise ;

2) The average linkage at (.0, .0) and the complete linkage at (.0, .5) perform worse when
p is close to 1.0 than when p is close to 0.0, regardless of the size of cluster (split)
for fixed & with MVN ;

3) For any other ACA defined by B<—0.25 and n>0.0 in the (B, n) plane, the number
of clusters for the the population structure generated is well predicted by C. for all settings
of the structural prameters (p, 8, split) with MVN ;

4) For any ACA defined by B<—0.5 and n>0.0 in the (B, n) plane, the number of clusters
are well predicted for MVLN.

At this point, investigation on the general use of C. with clustering algorithms when any prior
information is unknown for given set of data was our objective. It was necessary to choose several
pairs of clustering algorithms that cooperate with the comparative statistic, Ci., indicating the
number of clusters k=3 across all settings of the structural parameters. If the clusterings produced
by the nine ACA agree closely, we may have more confidence in prdicting the number of clusters
by observing the comparative statistics Ci. The number of local maxima at k=3 with respect
to %. was used to determine the performance of Ci in conjunction with the possible pairs of
ACA for the settings of the structural parameters for MVN and MVLN. In fact, the %. is the
“agreement” between two ACA consisting of a pair. Hence in predicting the number of clusters
by using C. for the settings of the structural parameters, the pair of ACA, A and B, that agree
more closely with respect to %. in terms of the clusterings than the pair of ACA, A’ and B’,
were chosen for further study iff

1) %.[A, BI>%[A*, B‘], where %[A, B] is the percent of local maxima obtained for
paired algorithms A and B

2) the %’s, the “percent retrievals” of A and B algorithms, are considered large for the
settings of the structural parameters.

In this way, a few general observations with respect to the settings (p, 8, split) for MVN

and (8, &, split) for MVLN was made as follows :

1) p does not greatly affect the agreement between the ACA with respect to %. for the two
splits with the effect becoming less for increasing 8, whenever the pairs with single linkage
algorithm are not considered for MVN ;

2) 0 has little effect on the agreement between the ACA for the several splits with
MVLN ;

3) The different splits with respect to %. have little effect on the prediction of the number
of clusters for MVN and MVLN ;
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Table 3. AVG%. and STD. of Correct Prediction by using All Possible Pairs of the nine
Algorithms on MVN and MVLN

POPULATION MVN MVLN
B, m 5 4.0 6.0 4.0 6.0
@, m AVG%, STD%, AVG%. STD%, AVG%., STD%. AVG%, STD%,
.0, C .0, .0) 24.5 4.45 55.3 2.44 18.5 1.16 40.2 1.60
-5, ( . .5)  28.2 3.73 71.3 1.61 23.3 1.66 50.4 1.91
(—-.25,—.25) 28.2 3.91 65.0 1.59 25.1 1.74 50.1 1.68
( , .0) 355 6.40 72.2 1.62 39.9 1.98 57.4 2.03
( , 5) 38.0 7.69 75.5 1.61 32.4 2.39 60.3 2.16
(=.5, .0) 37.0 6.28 74.0 2.07 34.1 2.27 62.6 1.96
( , .25) 38.5 7.66 77.0 1.83 33.9 2.44 63.9 1.80
( , .75) 35.2 6.09 74.0 1.10 31.4 2.00 63.4 1.88
¢ .o, (.0, .5) 37.3 2.12 59.2 2.17 29.6 1.08 48.2 1.47
.0) (—.25,—.25) 33.7 2.80 56.3 3.29 31.3 1.18 48.6 1.19
( , .0) 43.3 3.53 67.0 3.76 36.0 1.36 59.1 1.64
( , -5)  47.8 2.01 76.2 2.23 41.8 1.40 72.6 1.31
(=.5, .0) 46.0 2.68 73.2 3.80 42.0 2.01 71.7 1.85
( . .25)  49.0 2.02 76.8 3.08 43.8 1.68 74.7 1.40
, .75) 47.5 1.45 80.3 3.17 43.6 1.33 77.9 1.69
( .0, (—.25,—.25) 39.8 2.52 61.2 2.57 36.4 0.98 55.7 1.50
570 ( , .0)  42.2 3.90 60.8 3.37 41.2 1.53 56.8 1.80
( , .5) 48.0 3.62 71.7 1.78 48.0 1.28 68.9 1.51
(=.5, .0) 46.7 2.87 69.2 2.27 47.8 1.68 70.3 1.78
( . .25)  47.0 2.96 74.3 2.89 51.1 1.61 74.5 1.40
( , .75) 48.2 4.25 78.7 1.43 51.3 1.26 77.6 0.75
(—=.25, (—.25,—.0) 38.5 1.95 47.0 2.46 32.0 1.58 41.7 1.57
-.25 ( , .5) 50.5 0.99 69.0 2.38 47.6 0.98 67.2 1.58
(-.5, .0) 46.3 0.99 58.7 3.93 43.6 1.24 59.6 1.60
, +25) 51.3 1.43 69.8 2.59 48.4 1.36 67.6 1.33
( , .75) 53.2 0.91 75.7 1.69 50.4 0.56 74.9 1.11
(=.25, (—.25,—.5) 47.8 1.14 63.9 2.52 47.1 1.62 60.9 0.98
0) (=.5, .0) 36.7 1.38 50.0 1.91 42.9 1.82 51.4 2.14
, .25, 45.7 1.20 61.7 1.74 47.4 1.52 61.7 1.84
( , .75) 517 1.28 72.8 1.99 53.0 1.28 71.9 1.36
(=.25, (—=.5, .0) 44.7 2.20 58.0 2.52 47.4 1.19 59.4 1.62
5, ( . -25)  42.2 1.08 51.2 1.51 46.1 1.45 53.8 1.51
( , .75)  46.0 2.94 64.7 2.01 52.4 1.65 65. 2 1.18
(-.5, (—-.5, .25 33.8 1.90 40.0 2.25 38.4 1.75 41.9 1.56
.0) ( , .75)  46.0 0.93 67.2 2.54 51.1 1.28 66.3 1.50
(=.5, (=.5, .75) 45.2 1.22 57.8 2.29 47.4 1.22 60.6 1.91
.25)
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(b) 6=4.0, 30—20—10 split
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1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
k Kk
(c) §=6.0, 20—20-20 split (d) §=6.0, 30—20—10 split

Fig. 3. Retrieval results of the 5 pairs of ACA with p=.0 on MVN
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ACk

1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
K K
() 6=4.0, 20—20—20 split (b) 5=4.0, 30—20~10 spiit

ACk ACk

T

T < L

1 2 3 456 7 89 10 1T 2 3 4 5 6 7 8 8 10
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(¢) 5=6.0, 20—20—20 split (d) 6=6.0, 30—20—10 split

Fig. 4. Retrieval results of the 5 pairs of ACA with 6=15 on MVLN
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4) Increasing 8 from 4.0 to 6.0 causes an increase in %, for all settings (p, split) for MVN

and (8, ) for MVLN.

Overall, it is not necessary to consider the all structural settings(i.e., p or 8, split and &),
since the structures in many data sets are usually unknown. Then the summary on the %,
for all possible pairs of nine ACA is given in table 3.

Based on the AVG%. and STD%. from table 3, the pairs with (—.5, .75) in the (B, m)
plane perform better with respect to Ci than the other pairs of clustering algorithms for both
MVN and MVLN. Some pairs of algorithms indicate the number of clusters better than the
others for specific settings of the structural parameters. In addition, the behaviors of C. through
AC,, k=1, 2, -+, 10, for subjectively chosen five pairs among other pairs of algorithms with
MVN and MVLN are represented in figures 3—4, respectively. Five pairs are,

1 (—.5 .75 vs.(.0, .5),

2) (—.5, .75) vs .(—.25, .0),

3) (—=.5, .75) vs .(—.25, —.25),

4) (—.5, .25) vs .(—.25 —.25),

5) (—=.25, .5) vs .(—.25 —.25).

Moreover, the % retrieval of the true population generated with the specific structural parame-
ter for each clustering algorithm was considered from tables 1—2 for MVN and MVLN, respecti-
vely. If both algorithms combined as a pair have high retrieval abilities for the true population,
we will consider the pair to be the best among five pairs of algorithms for both MVN and MVLN
data. In this way the structure of clusterings produced by the pair of clustering algorithms is
also similar to the data structure generated.

From the results of the comparative study, it is concluded that the use of C. with the pair
of algorithms, (—.5, .75) vs.(—.25, .0), defined in the (B, m) plane is recommended in
predicting the number of clusters, regardless of the characteristics of the given set of data.

This confirms that the flexible strategy at (—.25, .0) recommended by DuBien and Warde
(1987) is at least one algorithm for finding the unknown structure present in many data sets.
Moreover, the pair of algorithms (—.5, .75) vs. (—.25, 0) generally performs better than
any combinations of single, complete, and average linkages, regardless of the degree of noise(p,
or ©) and the relative sizes(splits) of the clusters present in the data.

5. Concluding Remarks

A great of flexiblity in a limited extension of the comparative study could be achieved by
applying Rand’s C. and choosing different agglomerative clustering algorithms to pair with the
(—.5, .75) algorithm defined in the (B, m) plane. Since the use of Cy with the pairs of (—.5,
.75) with other clustering algorithms predicted the number of clusters fairly well.

In conclusion, it appears from the all evidence on its performance that the pair of agglomerative
clustering algorithms, (—.5, .75) vs. (—.25, .0), with C, statistic is a useful method on
determining the number of clusters present in the set of data for MVN and MVLN. Also, this
could be extended to the other types of data sets. However, the performance of Ci is dependent
on the characteristics of the data, the choices of agglomerative clustering algorithms and distance
measures. Therefore, the results on the use of C. should be examined critically to make sure
they are meaningful.
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