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ABSTRACT

This paper treats a robust design criterion which minimizes the effects of outliers and model
inadequacy, and investigates robust designs for some response surface designs. In order
to develop a robust design criterion and robust design, the integrated mean squared error
of #, over a region is utilized, where 3, is the estimated response by the minimum bias
estimation proposed by Karson, Manson and Hader (1969). According to the number of
aberrant observations and their positions, the proposed criterion and designs are studied.
Also further development of the proposed criterion is treated when outliers can occur in any
position of a design.

1. Introduction

This paper considers a problem arising in the design of experiments for empirically investigating
functional relationships between a dependent response variable and one or more independent
continuous variables. Suppose that an experimenter wishes to explore a functional relationship
between a response and several independent variables, x;, x2 **-, %,, over some region R of
experimental interest in the space of the quantitative factors.

The relationship could be expressed generally as

)=, B, 1.1

and observations y:{x) =n(x) +& where =, %2 =y %), 8= (B Bz > B)» and B's are
unknown regression parameters which must be estimated by experimental data and assume that
&~" (0,0%. If the true functional form n(x) =f(x, B) is unknown, as is often the case, the
relationship may be approximated by the low order terms in the Taylor series expansion of the
equation (1.1), which may be expressed as
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() =po+ LBt = + % + (1.2
n) =po = IBm l.gzlﬁi;xix/ iggk=qiijjxk . .

The study of design optimality criteria has been of fundamental interest to researchers in
the area of response surface analysis. Initially, criteria were largely concerned with variance,
either of the individual coefficients or the fitted polynomial as a whole. In later work, the question
of bias due to inadequacy of the approximating polynomial was considered by Box and Draper
(1959). They proposed the minimization of the integrated mean squared error (IMSE) of 5(x)
over R (R is some region of the factor space of interest to the experimrnter.) as a basic criterion.
This criterion considered bias and variance simultaneously. In general, the fitted equation 7(x)
in response surface experiments is intended to be used not only at the design points but with
some region K. For enlightening references of response surface experiments for the use of some
region of interest, the reader may refer of Myers(1976), Park(1977, 1978, 1981), Khuri and
Cornell(1987) and Box and Draper(1987).

When model inadequacy exists, the IMSE of 3{x) over R is

IMSE(3]1=V[3]+Bl3], (1.3)

where V[31=[r Varl5(x)JdW(x) is the integrated variance, and B[5]=[JE[H (@) 1-n@)}dW(x)
is the integrated squared bias, where W(x) is a weighting probability distribution function on
R.

In order to obtain y(x) the regression coefficients should be estimated from experimental data.
Since the IMSE criterion was introduced, several authors have suggested different estimators
for the regression coefficients to achieve smaller IMSE over R under some circumstances. In
particular, Karson, Manson and Hader(1969) suggested the minimum bias estimator as an alter-
native to the least squares estimator for polynomial fits. If an estimable condition is satisfied,
they show that the minimum bias estimator minimizes the integrated variance subject to the
minimum integrated squared bias for any fixed design.

This paper considers design aspects of response surface experiments in which emphasis is
on robust design to wild or “aberrant” observations. Based on designs in the space of the indepen-
dent variables, the Bi's are estimated by the minimum bias estimation (MBE). In this paper,
suppose an “aberrant” vector d'=(d;, dz -, d.) is added to the observation vector y'= (y;,
92y ¥.), so that any # real observation y:+d; can be an outlier. The IMSE[j.] is used
as a criterion on the accuracy of §.(x), where y.(x) is predicted value which is estimated by
the MBE.

The main contents of this paper are to find a robust design criterion to some possible positions
of outliers and to find robust designs, which are called R-designs will be found for the linear
model when the true model is quadratic and for the quadratic model when the true model is
cubic.

2. Development Of A Robust Design Criterion And Some Robust Designs

2.1 The Case of MBE

Most authors in describing optimal designs have used the estimation procedure of least squares.



Robust Designs to Outliers 149

When we are interested in bias caused by model inadequacy, it is natural to consider minimum
bias. Minimization of this potential bias can be done by choice of design. The well-known estima-
tion method is the MBE suggested by Karson, Manson and Hader(1969). An alternative strategy
is to adopt a method of estimation aimed directly at minimizing bias and to use additional flexibility,
if any, to satisfy other criteria.

Suppose the true model in (1.2) is a polynomial of degree ¢,

N =281+ Be,

but the experimenter fits a polynomial of degree ¢;<c; the first part x,/B;. By the following
lemma, we can obtain the IMSE[$.] when the MBE is used, d exists and j. is the fitted equation
by MBE. Throughout this paper we will define the ks as follows :

sih

1 if “aberrant” d: appears at the i observation
k= { 2.1

0 otherwise.
The matrix K=diag(k) indicates the position of occurring “aberration”.

Lemma 2.1
When n(x) is estimated by 7.(x) =x/b» (b»=Bb is the minimum bias estimator of B,.) and
aberrant vactor d exist, the IMSE of §.(x) over the region R is expressed as follows :

IMSE($,]=c*Tr[B(XX) BM,]+B,P*B,+dKS*Kd, (2.2)

where B=({I | Mi,"'My) and b=(XX) Xy, Tr represents the trace, P*=Mu—MueMu' My,
S*=TBM\BT with T=XX) X and M;= [sa/dW(x).

proof

First, we have to obtain the MSE[$,(x)]. It can be readily shown that variance part and
the bias part as follows :

Varly.(x) ] =xB(XXX) "Bxo®, and Bias’[im(x) 1={E[5. () 1—n @)1= 8, Gty Mu Mu—2") (i Mn
My~ B. + 2d KBx (e My M2 — %57 B+ d KT Bxw/BTKd.

Therefore, MSE[§.(x)1=x/B(XX) Bx,c*+ B, PB:+2d'KQB,+d'KSKd, where P= (M ‘M.~ 2
) ’(_J_C_an_lez_ﬁz') ’ Q:B:ng (&Mulelz_lz’) and S= T’B'x_lx_{BT.

Next, if the MSE[5,(x)] is integrated over the region of interest R, we can further obtain
that V[§,]1=c*Tr[B(XX) BM.] and Blj.]=8,P*B.+dKS"Kd.

Therefore, we can obtain the result (2.2).
Q.E.D.
By using the MBE, the integrated squared bias of 7.(x) in (2.2) is decomposed into two
parts. The first part, B,P*B. is the result caused by model inadequacy and the last term,
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d’KS*Kd, is the result caused by wild observations. When this is compared with the result of
IMSE in Appendix, it is of interest to observe that the second term in B{7], dKQ*8,, becomes
zero when the MBE is used. However, this term is not necessarily equal to zero when the
least squares estimation (LSE) is used. (This will be shown in Appendix). Hence, the MBE
is advantageous to the LSE when wild observations exist. Moreover, because each term of B{§.]
is a quadratic form, we easily achieve the more information. And by using the MBE, the first
term in B[J.] is minimized and b, minimizes the integrated variance subject to minimum B[$..]
for any fixed design. Thus b, makes smaller IMSE than that by using the Box and Drapper
approach, where in order to minimize the integrated squared bias they used the standard least
squares estimators and the following condition ;

(XI:XI) XX =Mn"'M..

Therefore, in order to reduce the effect of outliers proposed by a given aberration vector
d, we can regard the following condition as a robust design criterion to outliers. For a given
Kd,

Minimize dKS*Kd subject to B(XX) XX=B. (2.3)

Here, B(XX) XX=B is a necessary condition for existence of the b. (Ref. 6). Based on
the results we have obtained, we propose a robust design criterion (2.3) for a given Kd. The
design which minimizes (2.3) will be called the R-design. In the following sections we will
treat further development of this criterion in order to obtain the simpler forms.

2.2 A Single Aberrant Observation in a Subset of Points

Suppose a design consists of s sets of experimental points, and a single aberrant observation
exists at one set among s point sets. The sets will be called A with n, elements for 1<I/<s.

For a single aberration of magnitude & in the * observation, i.e. k=1 and k=0 for j=i
and 1<i<n in (2.1), dKS*Kd==4&%;" where s;* is the i* diagonal element of S*. When a single
aberration of magnitude & has equal probability of occurring at any of the #, elements in A,
we want to find the average value of dKS*Kd over all K in the A set. By the following lemma,
the average value will be obtained.

Lemma 2.2
Let A,=1i | {;<i<i} with m, elements where 7, and 7, are arbitrary observation numbers. When
the magnitude of d; is 8, the average of dKS*Kd over all K in A, is
El::BZTr(SI‘)/nI,

where S;* is the X, principal matrix of S* with the (4, *--, 7)™ rows and columns.

proof
Let Avg«( ) denote the average value of ( +) with respect to K.

B,=Avg(d'KS*Kd) =Avg Tr(dKS*Kd) 1= Avg Tr(S*Kdd'K)]
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=8Avge Tr(S*KJK) 1=8"4vgl Tr(I’KS*K1) ],
where J is the #X#» matrix with all elements 1's and J=11" with 1" ={1, -, Dix..
Let 1K=k'=(ky, ks -, k.), where ki are defined in (2.1). Thus,
§1=82Ang[Tr(§'S*Q)]=82Ang[éIA[sﬁ*k.-2]=82i§ms,»,-*/nz=82Tr(Sl*)/n,.
Q.E.D.

From the result of Lemma 2.2, T»(S;*) should be minimized to achieve robustness of dKS*Kd
to a single aberrant observation for a fixed A.

The following Table 1 is obtained by Lemma 2.2. Table 1 (c,:=2 and c:=3) is R-designs
obtained from the rotatable equiradial designs with two circles, where p is the number of variables.
The square region of interest represents R={—1<x<1 for all i}. Note that # is the number
of observations and #; and #. are the number of observations on the inner circle with radius
7. and on the outer circle with radius ., respectively.

Table 1. R-designs over the square region of interest(p=2)

n 0)) uan

10 (5, 5, 0.44, 1.4142)* (5, 5, 0.92, 1.4142)
11 (5, 6, 0.76, 1.4142) (6,5, 0.62, 1.3140)
12 (5, 7, 0.76, 1.4142) (7,5, 0.32, 1.0141)
13 (7,6, 0.80, 1.4142) (7,6, 0.32, 1.0141)

* 1 (nx. las 71 7’2)
(ID when one outlier exists on the outer circle.
(I) when one outlier exists on the inner circle.

We will treat further development of the proposed robust design criterion to reduce the effect
of outliers when an outlier can occur in any point of a design. Such development can be more
applicable in practice.

Corollary 1
When a single aberration of magnitude 8 has equal probability of occurring at any of the »
observations, the average of dKS*Kd over all K is
B=8Tr(S*)/n=8s:"*/n,
where s;* is the /* diagonal element of S*.
From the result of Corollary 1, Tr(S*) should be minimized to achieve robustness of the IMSE
(5. to an aberrant observation.

2.3 Serveral Aberrant Observations at Some Union of Subsets of Points

First of all, suppose that several aberrant observations exist at any union of sets of points
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with a single aberrant observation in each point set. When an aberrant observation of magnitude
& has equal probability of occurring at any 7, observation in the corresponding A;, we want to
find the average value of dKS*Kd with respect to K in UA;, which denotes a union set of A/s
with one aberrant observation in each set. We can easily obtain the following lemma without
proof by the same procedure as Lemma 2.2.

Lemma 2.3
UA: is the union of all sets with an aberrant observation. When the magnitude of aberration,
8, is equal, the average of dKS*Kd over all K in UA is

B,=¢§ i aSant/TIO), (2.4)

R eAv

where Av={G,k) | G,k) is an element of all possible combinations among A/s}, and Si»* denotes
the sum of all elements in the 2X2 principal matrix of S*, which has only the * and £” rows
and the /# and %* columns of S*.

From the result of Lemma 2.3, in order to obtain the R-designs according to the assumption
of Lemma 2.2, B, should be minimzed. It is equivalent to minimizing Xq.weaw S¢»* for fixed
S

Generally, we can consider the case of occurring different ¢’ s corresponding to A/’s, where
g is the number of aberrant observations in A; and 1<g:<w. For this case, in the formular
of B; in (2.4), only IL() changes to I'L(Z). Therefore, we can obtain the following lemma.
Let UA; be the union of all sets with aberrations.

Lemma 2.4
When the number of aberration observations in some A/'s, g is different from one another,
and the magnitude of aberrations is equal, 8, the average of dKS*Kd over all K in UA, is
oy — * n
B,= Szzz(j.k)EAUS(i.k)/I:I(q,) .
When several aberrant observations, g, exist at some corresponding 4’ s, B; should be minimi-
zed in order to obtain R-designs.
Those are represented as Ai={1, 2, =, n} and A={m+1, m+2, -, ni+nz, respectively.
In the following Table 2, (i, ¢.) denotes that g outliers exist in A, and g. outliers exist in
As.

Table 2. R-designs in rotatable equiradial designs corresponding for 4=2 and 3 over
the square region of interest (p=2)

(g1s _g2) 10 11 12 13

1, v (5,5, 0.92, v2* (5 6.1.05+2) (57, 0.9, 1.10) (6, 7, 0.95, 1.02)
1,2 (5,5, 0.8, 2 (6,5, 0.75, 1.22) (7, 5, 0.30, 1.02) (7, 6, 0.35, 1.02)
(2, 1 (5,5 0.92, 12 (56.1.05v2 (57 1.00, V2 (6 7, 1.00, /2)

* 0 (nn Nas 71 7’2)

We will also develop the robust design criterion to reduce the effect of outliers when outliers
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can occur in any point of a design with equal probability. If there are two or more aberrant
observations, a similar conclusion can be deduced. We can obtain the following useful results
for this case.

Corollary 2
If d=35 for all 7, and there are ¢(>2) aberrant observations with equal probability of occuring

at any of the n observations, the average of dKS*Kd over all K is
§4= 52}:2(:‘.;‘16 AUS,y*/w,

where s;* is the (7,/)" element of S*, w=(:), and Ay is equal to that in Lemma 2.3.
Moreover, B; can be expressed as follows :

B.= 8y, Z s+, Zisi™ 1w,

where YIZ(::) denotes the occurrence frequency of each s;* for any ¢ and y.=( :j:i) de-
notes the occurrence frequency of each s;* for ij. B, can be obtained by the following equation.

E=52[y2>,_:,zsi,~' +(y—v2) B 1/w. (2.5)

From the result of Corollary 2, in order to reduce the effects of outliers, we should minimize
the value of B.. The following lemma gives a useful tool in obtaining the minimum value of
B..

Lemma 2.5
When the MBE is utilized, the sum of all elements of S* is 1.

Proof
Note that X=(1 | Xr), where Xz is the remaining matrix without the first columm 1. From

the necessary condition for existence of MBE, we can see that B(XX) "X'(1 | Xx) =B and [B(XXX)
~X1 | BXX) XXed=U | My "M.).
Hence, we can easily consider the following relationship -

BXX)"X1=(1, 0, -, 0"

Since the sum of all elements of S* can be represented as 15*1, we can complete the proof
as follows :

15*1=1TBMuBT1=1XXX) BMB(XX) X1
(19 07 R O)Mll(ly Oy A 0)’:7}111:1,

where my is the first diagonal element of M.
By using the result of Lemma 2.5, we can find a simple form of the robust design criterion

to minimize B, for the case of several outliers.
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Corollary 3
For the case of several outliers, B, is minimized by minimizing 7r(S*) for a given d.

proof _ _
When the alternative form (2.5) of B, is used, by Lemma 2.5 B; becomes as follows :

54:82[‘Yz+ (YI—YZ) Z_:Sii*]/w-

Therefore, for a fixed » and ¢, B, is minimized by minimizing Tr(S*) =Xs:*.

3. Conclusions And Remarks

When outliers occur at a specific point sets and at any point of design with equal probability,
the proposed robust design criterion is developed as simple forms in lemmas and corollaries
in Section 2. In particular, we should note that when aberrations exist in the observations with
equal probability, the proposed simpler criterion, min Tr(S*), is exactly the same as Karson,
Manson and Hader’ s criterion, min Vi[§.]/0% even though our approach is different from theirs.
This min Tr(S*) differs from that of Box and Draper (1975), min(Z4%) diagonal element of
the hat matrix H=X(XX) "X and those of Herzberg and Andrews (1976) and Andrews and
Herzberg(1979). The first different point is the choice of the estimation method, that is, Tr(S*)
criterion is deduced by the MBE while their criteria are deduced by the LSE. The second is
the choice of model, that is, they did not discuss model inadequacy. Another different point
compared with that of Herzberg and Andrews (1976) is that once outliers have been identified,
estimation of the unknown parameters based on the remaining data can be treated by assigning
whether or not the #* observation is rejected. And compared with that of Box and Draper(1975),
it is the G-efficiency criterion used in the selection of a design to control the variance of the
9's, 7 being the estimated value of the response function at a design point.

We believe that in constructing a design for response surface experiments, a design robustness
should be considered as a design criterion in addition to rotatability, slope-rotatability, D-optima-
lity and so on.

Appendix
When n(x) is estimated by $(x) =x/b, with b,= (X,X,) "X,y but the true model n(x) =xB:+x:B:
(for the complete set of # data points 7(x) =Xy, and n(x) =X,8:+X,B,), the IMSE of 7(x) over
the region R is expressed as follows :

IMSED] = GzTr[ (XI:XI) N lMu:] +ﬁ2’P1 *ﬁz'*' ZQKQl*ﬁz +QKS1*KQ,

where Pr* =AMuA~MupA—AMao+ Mz, Q* =T (MuA—My) and Si* =T/ M. T with A= (X, X))
Xle and T\= (Xl.’Xl) _IAX{-
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proof
First, we have to obtain the MSE[5(x)]. It can be shown that the variance part and the

bias part as follows :

Var[3 () 1= Var(x b)) =o' (X, X)) ", and Bias’ly () 1=[ (/A ~x:) B+, TKd 1L (/A —2,) B

+ 1, TiKd] =B, P\B,+2d’KQ,3,+dKS.Kd,

where Pi=Axu/A~Axw — A+ xx, =T (w/A—xx) and S$i=Tixx T

Note that E[j/(_&_)] :_@'E(Ql) =_x_1'(X1’X1) —I-le(,Xlﬁl—i-Xz_B_z_{_Ki) =£1'(_B_1+Aﬁz+ TLKQ) .

Therefore, the MSE[H () ]=c%(XX) '+ B, P13, +2dKQ,B.+dKS.Kd. Next, if the MSE[5(x)]

is

integrated over the region of interest X, we can further obtain that
Vi1=c*TrL(X,X,))"*My] and B[5]1=8,P,*B,+2d’KQ,* B+ d’KS,*Kd. Therefore, we can obtain

the above equation of IMSE[].

10.

11.

If Box and Drapper condition is satisfied, the second term of the above result becomes zero.

Referances

. Anderews, D.F. and Herzberg, A.M.(1979). The Robustness and Optimality of Response Surface

Designs. journal of Statistical Planning and Inference, 3, 249-257.

. Box, G.E.P. and Draper, N.R.(1959). A Basis for the Selection of a Response Surface Design.

Journal of the American Stalistical, 54, 622-653.

. (1975). Robust Designs. Biometrika. 52, 347-352.

(1987). Emperical Model Building and Response Surfaces. New York : John Wiley.

. Herzberg, A.M. and Andrews D.F. (1976). Some Considerations in the Optimal Design of Experiments

in Non-optimal Situations. Journal of the Royal Statistical Sociely, Ser. B. 38, 284-289.

- Karson, M.]J., Manson, A.R. and Hader, R.].(1969). Minimum Bias Estimation and Experimental

Design for Response Surfaces. Technometrics, 11, 461-475.

. Khuri, A.L and Cornell, J.A.(1987). Response Surfaces Designs and Analyses, New York : Marcel

Deckker.

. Myers, R.H.(1976). Response Surface Methodology, Ann Arbor : Edwards Brothers.
. Park, S.H.(1977). Selection of Polynomial Terms for Response Surface Experiments. Biometrics, 33,

225-229.

(1978). Selecting Contrasts Among Parameters in Scheffe’s Mixture Model : Screening Com-
ponents and Mode! Reduction. Technometricss 20, 273-279.

(1981). Collinearity and Optimal Restricitions on Regression Parameters for Estimating Respo-
nses. Zechnometrics, 23, 289-295.



