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ABSTRACT

In this article various notions of multivariate negative dependence for random variables
are obtained. Various properties and interrelationships are also derived from these notions.
Several counterexamples are given to ilustrate that other implications may not hold.

1. Introduction

Lehmann(1966) has introduced various concepts of positive and negative dependence for two
random variables. Stronger notions of bivariate positive and negative dependence were developed
later by Esary and Proschan(1972). Multivariate generalizations of the notions of positive depen-
dence were initiated by Harris(1970) and Brindley and Thompson(1972). Also Ebrahimi and
Ghosh(1981), and Block, Savits and Shaked(1982) have extended these positive dependence
concepts into the multivariate negative dependence analogs.

In this paper we derive some relationships among various concepts of multivariate negative
dependence. In section 2, we introduce the notions of reverse rule of order 2(RR,) in pairs,
negatively likelihood ratio dependence(NLRD) and stochastically decreasing(SD) and show their
relationships, that is, RR. in pairs< NLRD ==SD. In section 3, various concepts of right
corner set decreasing(RCSD) and left corner set increasing(LCSI) and preservation of LCSI
are studied and the relation that LCSI implies left tail increasing in sequence(LTIS) is proved.
In Section 4, concepts of negative upper orthant dependence(NUOD) and negative lower orthant
dependence(NLOD), preservation of NLOD is also investigated. Counterexamples are given

to illustrate no other implication holds among these concepts(righf tail decreasing in sequence
(RTDS) = NLOD, NLOD =LTIS).
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2. Reverse Rule of Order 2 and Negatively Likelihood Ratio Dependence

We start with the definition of reverse rule of order 2(RR.) in pairs.

Definition 2.1(Karlin 1968). A function f: R*— [0, ©J is RR, in pairs if for any pair xi
% f(X1 "5 X "5 X " Xo) viewed as a function of xi, x; with the other arguments held fixed
satisfies for every x < x/, x <x'(1<Li<j<n)

f(Xh“'9xi9'"9Xj"“!Xn) f(Xh'“9Xi’9'",Xj9'“,Xn) SO (2 1)
f(Xx, e X ...,le,...,xn) f(Xh X ...’le, "'9Xn)

If (2.1) holds for a probability densty function(pdf) f(xi,***,x.), then we say (Xi, -+, X,) or
f is RR. in pairs(RR;{Xj, "', X.}). Dykstra, Hewett and Thompson(1973) have defined X; is
negatively likelihood ratio dependent(NLRD{X; | X;, ==, Xi-5, Xivns =, Xo}) 00 Xip »++, Xim1s Xivrs o7,
X, if for x < %', i=1,2,*",n,

f(Xb ) Xn)f(XI'9 Tty Xn’) S
f(Xh *0ty Xi-1s Xi’9 Xit1s """y Xn)f(XII, ) xi—ll9 Xis Xi+l’, STty Xn,) (2- 2)

where f denotes the pdf of X;,**, X..

Definition 2.2(Barlow and Proschan, 1981). A random variable X; is stochastically decrea-
sing(SD{Xi | Xi, ***, Xi-1, Xis15 **» Xa}) in random variables Xi, ***5 Xie1, Xivr, ==+, X if P> x| X,
=X1p s Xic1 = Xim1s Xit 1= Xit 15 ***» Xo = Xof 15 decreasing in X, ***s Xi-1, Xir1, *** Xan

The following example illustrates that if a joint probability mass function(pmf) f satisfies(2.2),
then it does not necessarily imply that every marginal of f satisfies(2.2).

Example 2.3. Let X=(X;, Xz, Xs) be a random vector given by the following joint pmf on
{0,1} X {0,1} X {0,1}

X;
0 1
X, Xs
0 I 0 1 (2.3)
X 0 0 0.01 0.01 0.2
! 1 0.01 0.56 0.01 0.2

It is easy to check from (2.3) that joint pmf f(x;, %, Xs) satisfies (2.2) and therefore X,
is NLRD on X;, X.. Let g(xi, x.) be the joint pmf of X, and X.. Since g(0,0)=0.01, g(1,1)=0.
76, g(1,0)=0.02, g(0,1)=0.21, g does not satisfy (2.2), so that X, is not NLRD on X..
Moreover, P[X; > 0| X,;=0, X;=0] = 0.01/0.01, P[X,> 0| X.=1, Xs=01=0.56/0.66, P[X,
>0 | X.=0, X:=1]=0.01/0.02, P[X,> 0! X,=1, Xs=11=0.2/0.4, so that SD{X: | X, X:}.
However, P[X; > 0| X;=0]=0.02/0.03, P[X,> 0| X,=1]=0.76/0.97 and therefore X, is not
stochastically decreasing in X.. This illustrates that if X is stochastically decreasing in X, ***, Xi-1,
Xie1, -+, Xa then it does not necessarily imply that X; is stochastically decreasing in a subvector
of Xi, -+, Xoe

The following theorem gives interrelationships between (2.1) — (2.2).

Theorem 2- 4- (a) RRZ{XX, ""Xn}QNLRD{Xi I Xh"'oXi—lei+h "'9Xn},
(b) NLRD{XI | Xl’ °"9Xi—19 Xi+19 '"9Xn} jSD{)(: | X), '"’Xi—ly Xifh ""Xn} .
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Proof of (a). (=) For every choice of x <x/, i=1,",n,

(X1 =0 XD (X1 Ko+ Xim 1y Xs Ki1 ** %5 Xa) <
f(X'u K29 **" 9 Xi—1y Xis Xit19 """ Xn)f(le Uy Xim1s Xi's Xit1s **%s Xn)
f(Xl', X2y """ Xn)f(Xl” Xo's X3s *** Xim1s Xi's Xi#19 7" Xn) S
f(X'l; Xa's 2%y Kim1s Xis Xiv1s **" xn)f(Xl', X2y "%y Xi-1s Xi'» Kit15 *° Xn) (2. 4)
£ 70y Ximt's Xio Xty 7" Koty X) (05 0 %) <
£ 1, X"y ** s Xlim1y X'y Xliv1y 20 Xt X 005 002 Xints X Ximt's **0 5 Xa')

By multiplying (2.4) side by side and cancelling the common terms from both side, we obtain
(2.2) and so X; is NLRD on Xi, =5 Xi-1s Xir1s = Xoe
(<=) In the definition of NLRD i.e. in (2.2) take any x < x/, x < %/ for j > i and take x=x'
for k=1,2,*-,n with k> j, k> 1i. Then we obtain (2.1).

Proof of (b). From (2.2) we have

f(XI,"'9Xn) f(XI,'“9Xi—IQXi,9Xi+19"'9xn) < O
f(xlls Ty X’i—l’ Xis x,i+1, "ty Xn’) f(XI’9 "ty Xn') -

= { J‘z; f(xl,! “"xilo "'1Xn~1l1 Xn’)dxi’ ﬁ f(xl, °*ty Xi-1y Xi’9 Xi+1s '",xn)dxi' SO

J‘l—ao f(XI,y oty Xim1's Xis Xit1's 007 Xn') ax; f‘—w f(Xx, Tty Xn) dx;
for x; <%, i=1,2,--",n. Adding the top row to the bottom row and converting to ratios, we
obtain the following inequality

P[X1>t | Xl = Xl’y“'in—l = Xi—111Xi+1 = Xi-rlly"'9Xn = Xn’:l S
P[X|>t | Xi = x5 X1 = X1y Xit1=Xir1y 5 X = Xa]
for xlgxl’,"',x;-lgx;—l’, XiHSXiﬂ',‘”,XnSXn', which shows SD{X. | X;,"',Xi—l, i+1y """y
X.}.

3. Right Corner Set Decreasing and Left Corner Set Increasing

In the definitions of Ebrahimi and Ghosh(1981), the random vector Y is right tail decreasing
in the vector X(RTD{Y | X}) if P{Y >y | X > x} is decreasing in x for all y. Parallel to the
RTD, the random vector Y is left tail increasing in the vector X (LTHY | XP) f P(Y <y | x <x)
is increasing in x for all y. Moreover, if for alli, i=1,2,--,n—1, X is stochatically left tail
increasing in X1, -**, Xi, then {Xi, **-, X,} is called left tail increasing in sequence(LTIS{X. | Xi, -,
Xaa})- )

Definition 3. 1(Brindley and Thompson, 1972). Random variables X,, ***, X. are right corner
set decreasing(RCSD{Xi, -, Xu}) if "

P{X1>X1'9"',Xn> Xq' ’ X1> Xl;"',Xn> Xn} (3. 1)

is decreasing in {x  x; > x/} for every choice of x/', ", x.’. Similarly, random variables X, **, X,
are said to be left corner set increasing (LCSI{Xi, -,X.}) if for every choice of X/, s Xy

P{XISXI,Q'"9XnSXn' l XISXD ""Xngxn} (3-2)
is increasing in {x @ x <x}.

We obtain following LSCI example from the similar example which has RCSD property (Brindley



80 Tae Sung Kim and Jon I Back

et al. (1972)). Let X,Y,Z be uniformly distributed over the tetrahedron with vertices (0,0,0),
(-1,0,0), (0,—1,0) and (0,0, —1).

Let F(%,y,2) = F[min(0,%), min(0,y), min{(0,2)] and for x,y,z <0, F(x,y,2) =0, x+
y+z< —1, Flx,y,2) = (I+x+y+2)?} —1<x+ytz

If —1<x+y+zand x<x thenP{X<x, Y<y, 2Lz | X<x, YLy, Z<L 2} is increa-
sing function of x. Hence X, Y and Z are LSCI.

Theorem 3.2. If {X,,--,X.} is RCSD then any subset.of {X,r**,X,} -is RTD in any other
subset of them.

Proof. For any subset of K {1,2,*,n} take x/ > x fori €K and x' < x fori € K, where
K denotes the complement of K. Then by the property of RCSD, P{X« > x’ | Xx > xx, Xx
> xz} is decreasing in xz for all xg'.

Similarly, if {Xi, ", X.} is LCSI then any subset of {Xi,***,Xa} is LTI in any other subset
of them.

Theorem 3.3. The random vector X = (X,,*-,X.) is RCSD if and only if for every subset
K C{1,2,*,n}, P{Xe > xx + Ax | Xz > xx, Xx>xx} is decreasing in xx for all x: and all-
Ag >0 where K denotes the complement of K).

Proof. For given subset K C {1,---,n}
P{Xx>Xx + Ax | Xe > x0, Xi xa} = P{X>x’ | X > x}

wherexy = x + A, ifi € Kand x¥ = —o ifi € K. If X is RCSD, this probability is decreasing
in xz.
Now assume the converse hypothesis and let x’ and x be given.
By taking K = {i ! x/>x} and K= {i ! xt <x}
PIX>x' | X>x} = P{Xe > x, Xi > x¢ | Xx > %0 Xi> x5}
= P{Xx>Xx' | Xx>xk; Xl:> Xx_}
= P.‘{Xx> xx T+ Ax ' Xx>xx, Xx_> Xx_}, by lettlng xx’ = xx T Qg Ax>0.

By hypothesis this conditional probability is decreasing in x<. Hence X is RCSD.
The following theorem exhibits a LCSI preservation property.

Theroem 3.4. Let the random variables X,, ***, X, be LCSI and let g : R—R be a Borel measu-

rable strictly increasing function for each i=1, -, m. Define Y/=g(X),i=1,*",m. Then Y, """, Y
are LCSI.

Proof. Put for i=1,--,m, y/=g(x’) and, yi=g(x).
LCSHX,, -, Xu}
SP{X <z Xo < x| X < X0y, X < X} is increasing in {x 1 x < x/}
t"L"P{ gl(Xl) S gl(Xl’) 3"y gm(Xm) S gm(xm’) ‘ gl(Xx) S gl(Xl) sy gm(Xm) S gm(xm)} is
increasing in {g(x) : g(x) <glx)}
SPIL <y Y <y | i< iy o, Yo < ya) is increasing in {yi @ yi < yv'}
<LCSH{ Y, ", Yal -

Theorem 3.5. LCSI{Xi, -, X.}=>LTIS{X. | X;, - %o}

Proof. First we are to show that X, is stochastically left tail increasing in Xi, -+, X.-.. Take
x<x/ and x = for i=1,2,*,n—1, and x,’ < x.. Then from (3.2) we' have
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P{XnSXn’ | XISXD'"’Xn-ISXn—I, Xn__<__Xn}- (3-3)

In (3.3) by choosing x,— @ and x.’ = t < o we obtain that P{X, < t | Xi < %1, **, Xam1 < %01}
is increasing in X1, ***, Xa-1. Thus by Brindley and Thompson(1972) we have that LCSI{Xi, -*, X}
lmphes LTIS{ Xn l le ."an—l} -

4. Negative Upper(Lower) Orthant Dependence

Definition 4.1(Joag—Dev and Proschan, 1983). Random variables Xi,*,X, are said to

be negatively upper orthant dependent(NUOD{X;, -+, X.}) if for all real xi, ***, %o P(Xi> %, ",

Xo > x.) <TIP(Xi> x) and they are negatively lower orthant dependent(NLOD{Xi,,X.})
=1

if for all real xu %X P <3 Xo < %) < TIP(X; < x). Furthermore, random variab-

=1

les Xy, =+, X, are negatively orthant dependent(NOD{X,, -, X,}) if they are NLOD and NUOD.

Theorem 4.2. Let {Gi:1<i<n} be a family of distributions of Xi, -, X, which are NL-
OD and have same one dimensional marginal. If G = §laiGi, E,&‘ =1, a;>0 then G is al-

so a distribution of NLOD random variables Xi, -, X..

Proof. By definition, the one dimensionals of G are the same as those of Gi, and so it can
be easily proved.

Theorem 4.3. Let random variables X, **, X, be NLOD, let Y, ***, Y. be conditionally indepen-
dent given X,, -+, X, and let Y; be stochastically left tail increasing in X, -, X, for all i = 1, -, m.
Then

(i) Xi . Xe Yi, -+, Yo are NLOD, and (i) Yi, -+, Y. are NLOD.

PrOOfO (i) . P(Xl g X1 *"%y Xn __<_ Xny Yl S Yx, "ty Ym S Ym)
=PV <y Yo <¥u | X <5y, Ko < x) PG < 50, X < %2) By conditional  inde-
pendence

=11 POY <y I X <3 X < ) P < 5, 7, %o < %) By assumption LTIHY: | Xy, o, Xo}
i=1

; . for i=1,+*,m and by the assumption NLOD{Xi, ---, X.}
SHP(Y;S}G) II P(X,_g Xj)
i=1

=1

= P(Xl g_ Xl) P(Xnﬁ Xn)P(Yl S Y1> P(Ymg ym).
(i). Taking x;—> o (j=1,-,n) in (D, (i) follows.

The following counterexamples show that other implications may not hold.

According to Ebrahimi and Ghosh(1981) random variables X, -, X, are said to be right tail
decreasing in sequence(RTDS{X. | Xy, -+, Xs-1}) if for all i=2,--,n, Xi is stochastically right
tail decreasing in X, ', Xi-1.

Example 4.4. Let the trivariate discrete random vector X= (X, X, Xs) take values (1,1,1),
(1,2,2), (2,1,2) and (2,2,1) each with probability 1/4. Then P(X; = 1) = P(X, = 1) = P(X,
=D =PX=2 =PX.=2) =P(X =2) =1/2. Since P{X;>01X.>0,X,>0} =1, P
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{%,>01X>0X>1 =1, P{X%>01XL>1LX>1 =1, PX>11X%>1L,X>0 =1
/2, PIX:>11X%>0,X>1} =1/2, P{X: >11X>1,X > 1} =0, so that Xi, X and X
are RTDS by the symmetry of X, Xz Xa. Since P{X: <1, X <1, X:< 1} =11/4>11/8=P
X, <1}P{X. <1}P{X: <1}, Xi, X. and X; are not NLOD.

Johnson and Kotz(1975) have provided necessary and sufficient conditions for the NLOD prope-
rty for the following Farlie-Gumbel-Morgenstern(FGM) system.
Consider the case n=3. An explicit form the three-dimensional FGM system is
F(Xb Xay Xs) = FI(XI)FZ(XZ)FB(Xa)[l + aszl(X))Gz(Xz) + axaGl(Xx)Gs(Xa) + szGz(Xz)Gs(Xa) +
Gy (Xl) Gz(Xz) Ga(Xa) ]

and

G(Xn X2y &) =P[X:> x Xz> X2 X3 > Xs] = Gx(Xx)Gz(Xz)Ga(Xa)[l + O.lel(Xl)Fz(Xz) + ol
(Xx)Fs(Xa) + (lstz(Xz)Fs(Xs) - aIZSFl(XI)F2(X2)F3(X3)]
where Fi(x) = P(X;<x) and G(x) =1 - F(x), j=1,2,3.

They have shown that (Xi, X, Xs) is NLOD if and only if a; <0(1<i<j<3),

ae + o + axs + (Ilzago, Ot o+ 0s— s S.O (4. 1)

We use this fact to explain that the random variables X, X., X; are not necessarily LTIS, when
(4.1 holds.

Example 4.5. Let (X,,X:,Xs) be NLOD and satisfy FGM system. Then
P[Xag)h | XISXI’ X2£X2] -

PDQ S Xa] { 1+ (alsGl(Xl) Ga()h)lt_a;:féfz(}zz)%f(xi) + G.123G1(X1) Gz(Xz) Gs(&)) } . (4. 2)

Assume that each G; is a continuous function and choose x:, Xs such that Gi(x1) = 1/2, Gs(xs) <
1. Also let az = —0.3, @ = —0.1, 0z = —0.1 and ans = 0.4 so that (4.1) is satisfied. Now
with the choice %’ < x” such that G.(x,") = 1/2, G(x") = 1/4 it follows that the expression
in the hracket of (4.2) with x = x’ is 1 while the expression in the bracket of (4.2) with
X: = X' is less than 1. This shows that the LTIS property does not necessarily hold.
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