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A Class of Admissible Estimators in
the One Parameter Exponential Family”
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ABSTRACT

This paper deals with the problem of estimating an arbitrary piecewise continuous function
of the parameter under squared error loss in the one parameter exponential family. Using
Blyth’s(1951) method sufficient conditions are given for the admissibility of (possibly generali-
zed Bayes) estimators. Also, some examples are provided for normal, binomial, and gamma
distributions.

1. Introduction

Let X be a random variable with the density
f(x:0) =", xeA, 0€® (1.D

with respect to some o-finite measure p on A, where A is an interval in the real line, and
® is taken to be the natural parameter space

@=1{0:e=[ie™ dulx) <o |.

From the convexity of the exponential function, @ is an (possibly infinite) interval, (9,9)

dp(6)

say, in the real line. It is well known that, in the interior of @, Ei(X) = p'(0) = 6

b4

where E, denotes the expectation of X with the density (1.1).
Consider the problem of estimating any (piecewise) continuous function h(6) on ® under
squared error loss L(6,d) = (h(8)—d)? where d & D, the decision space.

+ Part of this article was addressed at the Conference of the 6™ Korea and Japan of Statistics on July, 1989.
¥ Department of Mathematics, Hanyang University, Seoul, 133—791, Korea.
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Karlin(1958) investigated sufficient conditions for the admissibility of estimators of the form
aX for estimating h(8) = p'(8) under squared error loss. This result was generalized in several
directions. Sufficient conditions for admissibility of aX+b for the same problem were later obtained
by Ping(1964) using the Cramer-Rao Inequality and by Gupta(1966) following Karlin’ s argument.
Zidek(1970) provided, using the formal Bayes approach, sufficient conditions for admissibility
of X for estimating h(8), not necessarily the mean p'(8). For estimating h(8) using Karlins
argument, the reader is referred to Ghosh and Meeden(1977), Ralescu and Ralescu(1981).
On the other hand, Brown and Hwang(1982) have developed a simple and unified approach
using Blyth’s(1951) method for proving the admissibility of (possibly generalized Bayes) estima-
tors of the mean vector of a multiparameter exponential family. The simplicity is achieved by
using a single sequence of priors for all estimators. Das Gupta and Sinha(1984), using Brown
and Hwang’s technique which was in turn based on Blyth’s method, gave sufficient conditions
for the admissibility of (possibly generalized Bayes) estimators of h(8), other than the mean
p'(0), under squared error loss.

In Chapter 2, we shall provide, using Blyth’s method, sufficient conditions for the admissibility
of (possibly generalized Bayes) estimators of h(8) with the special form (see the equation (2.2)).
This set of sufficient conditions differs from that given by Das Gupta and Sinha(1984). Also,
we shall give, using Brown and Hwang’s technique, sufficient conditions in cases when @ is
the real line or the proper subset of the real line. Finally, Chapter 3 contains examples for
normal, binomial, and gamma distributions.

2. Sufficient conditions for admissibility

Let X be a random variable with the density (1.1).

Consider the problem of estimating an arbitrary(piecewise) continuous function h(8) under
squared error loss L(8,d) = (h(8)—d)%

The convexity of the loss function permits us to restrict attention only to nonrandomized estima-
tors (see Berger, 1985, p4l). Furthermore, there is no loss of generality in using a single
observation X because of sufficiency.

Consider a prior distribution G(8) on ® with the differentiable density g(8) with respect
to Lebesgue measure.

Now, define, for fixed a & R! and n(>—1) € R},

LD = [t - exp{0(x+a)—(n+1) [fh(t)dt}ds, x €A,

where d is an interior point of @, and fth(t)dt exixts and is finite for every [a,b] C ®. As-
sume

L(1g/@ |) <eco for all x, 2.1
where the prime denotes the differentiation of g, with respect to 8, and
2.(0) = g(0) * exp{ —ab—p(@)+(n+ 1) Fh(t) dt}

Let &; be defined by
. _ _ xta L(g!)
&) = — D L(g)

» X €A, (2.2
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with the convention that -E%D"—’).= 0. Throughout this paper assume that R(8,8,) < for all

0 € @ where R(8,8,) is the risk of 3,.

Remark 2.1 : Note that d, is the generalized Bayes estimator of h(8) with respect to g(8)
under assumption (2.1) and the further assumptions; for each x € A,

L(g) < oo 2.3

and

(lrx*rgl 2.(0) « exp{6(x+a)—(n+1 B h)dt} =0
= lim 2.(8) - exp{8(x+a) —(m+1 Lh) dt}, (2.4)

This can be shown as follows . If the assumptions (2.1), (2.3), and (2.4) hold, then by
.integration by parts,

[z h(B) - e™ "g(6)do
J‘@ er—p(U) g(e> de

_ [8e® g(8)h(®) - exp{ —(n+1) [ h(t)dt}dd
J»e”g.(0) - exp{ad—(n+1) B a(t)dt} do
xta L(g')
n+1 (n+1D L(g)

In particular, if ® = R, the real line, and (2.3) holds, then the assumption (2.4) is automatica-
lly satisfied, and hence 8, is the appropriate genaralized Bayes estimator of h(8) under assumption
(2.1). Alsc, if g vanishes outside a closed and bounded set in ®, and (2.3) holds, then &,
is again the appropriate generalized Bayes estimator of h(€) under assumption (2.1).

Before providing sufficient conditions for admissibility of 8,, we first give Blyth’ s(1951) method
for proving the admissibility of estimators, stated below in the form appeared in Berger(1976,
p345, Theorem 3). See also Stein(1955) and Berger(1985, p547).

8.(x) =

Lemma 2.1: Let {h.} be a sequence of absolutely continuous functions defined on ® such
that

(I) for every n>1, [ h2(6) - g(6)de < o ;

(I1) for every n>1, there exists an C >0 such that h.(8) > C for
all 8 in a set 8 S @ with [;g(6)d6 >0

() h.(8) =1 a.e. (Lebesgue measure) as n—> .

Consider a sequence {g.} of prior densities with respect to Lebesgue measure such that g.(6) = h,’
(0) - g(@). Then, if

A= [p{R(6,8,) — R(0,8)}g.(8)d6—~C as n—> o,

8, is admissible for estimating h(8), where &, is the proper Bayes estmator of h(8) with res-
pect to the prior density g.(8), and R(6,8) is the risk of an estimator 8(X) of h(®).

Now, let {h.} be a sequence of absolutely continuous functions defined on @ satisfying condi-
tions (1), (II), and (II) of lemma 2.1. Consider a sequence {g.} of prior densities over
@ with respect to Lebesgue measure such that g.(6) = h.*(8) - g(6). Then, the corresponding
(proper) Bayes estimator &, is defined by
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xta L(g..")
n+1 (n+1D Llg.)

where g.(0) = g.(8) - exp{ —a8—p(8) +(n+1) L h(t)dt},
under the assumptions

L{lge|)<ew for all xe A 2.5)

8y, (x) = , XE A,

and

grgl 2.(0) - exp{0(x+a)—(n+1D ffht)dt} =0
- = lim 2.(8) - exp{0(x+ta)—(q+1D [Fh(t) dt}. (2.6)

We now provide a set of sufficient conditions for admissibility of &, in (2.2) for estimating
h(0) under squared error loss.

Theorem 2.1 : Let g be a differentiable prior density satisfying (2.1). Let h(8) be an arbitrary
(piecewise) continuous function on ®@. Assume that there exists a sequence {h.} of absolutely
continuous functions defined on @ satisfying (1), (II), and (IlI) of Lemma 2.1, and the
conditions (2.5) and (2.6) such that

Jo 8(0) - [h/(8)1d6 >0 as n—> 0. @.7
Also, assume that
[E@F o
fo —5iy ®< (2.8)
and
Jo g0 - [a+p(®)—(+Dh(®1*de < o . (2.9

Then, & in (2.2) is admissible for estimating h(8) under squared error loss.
Proof . - By Lemma 2.1, it is enough to show that
A= [g{R(8,8,) — R(8,5)}2.(0)d8 —> 0 as n—> o,

where g.(0) = h,2(0)g(0), 6 € @.
Now, applying Fubini’s theorem yields
A, = o fa] 180 —h(0)}* — {8,(x) —h(®)}?] (x5 8)g.(6)du(x)do
= [ [8:(x) 1 — [8,(:) 1%} {fg £(x 5 8)2.(8)d0} du(x)
— 20L8,(x) — 8,,(x) ][ fg f(x 5 )h(8) g.(8)dO] du(x)
= [1i[8(x) — 8,(x) ]2 L* (gn) du(x)

1 Llg) _ L{gw) 12 1+
D M TG T 1 @, 2.10)

where L*(t) = [p t(8)f(x ; 6)d6.

But, L*(g.) = Jg 2.(0) - e*™” do
= [0 2.(8) - exp{ —ab—p(8) + (n+1) L h(Ddt} - exp{8(x+a)—(n+1) L h{(t)dt} d6
= L(g).
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Hence, since g.' = g/h. + 2g.h.hy’, (2.10) becomes

L(g)  Lg.)
L(g) L(g.n)

(+D2a. =6 12 Llgw) du(x)

_or L) Lhd o Lghh) qex s
M Ty 2 iy ) kehd dul
[L(gohaha') J2 L{(g) _ Llghd) 1, .
<8 T.(ghd du(x) + 2] e L(znd ]?L(ghd du)
= 8A, + 2B,, say. (2.11)

First, consider the term, A,, in (2.11). Now for each x € A, using the Cauchy-Schwartz Inequa-
lity,
[L(g.h:hs) T2
= [ fp &(@h.(0)h/(8) - expl8(x+0a) —(n+D fih(t)dt} de]?
< g 2(®00) - exp{o(x+a) —(n+1 fh(Ddt} d6]
- | fo 2(8) {h ()} - exp{8(x+a)—(n+1) fih(t)dt} db]
= L{gh?) [pg® [hy (0)1* - ™" do
= L(gh?) L*(g- h?. (2.12)

Substituting (2.12) into A, yields, by Fubini’s theorem and the condition (2.7) of Theorem
2.1,

[L{g.h.h,") 1*
L{(gh?)

< L*(g* h? dulx)

= [ o g(0) [hy(8)1? - ™ du(x)

= [ g(0) [h(8)1*d0— 0 as n—> . (2.13)

Next, consider the term, B., in (2.11). Then, using the Cauchy-Schwartz Inequality and the
fact that for all n>1, h2(0) <K< a.e.(Lebesgue) by (I) and (II) of Theorem 2.1,

— Ix(go’) _ Ix<go’ * hn2> 2 R
B.= [ [ (o) L(s b5 17 L(g - h?) du(x)

A= u du(x)

_ [ L{gN1L(g, - h)/1Lg) — L(g’ - h) T*
Ja I.(g - b)) duCo
[ L{g - h21(g)/1{g,) — g’/ ht/{g. - h.)) } I*
Lz B du)
L(g - h?) - LLgh2(I(g))/1.(g) — g//g)*]
=24 L(g - h)

=i L[ &- h{ II((gg)) - gg 12] du(x)

<KnL] gl II((gg)) —~ i": 11 du(o. (2.14)

Now, the integrand in (2.14) becomes, for each x € A,

du(x)
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Llg | g//g. — L.(g.)/1{g) | ]
= Llg/ g, — 2g.' * 1.(g.")/1.(g) + g11(g.") /L (g)}]
= Llg*/g.] — [L(g,)1¥/1.(g) <Llg*/g]. (2.15)

Hence, substituting (2.15) into (2.14), we have, by Fubini’s theorem,
Bn S KJ‘A Ix(golz/go) dp(x)

= Khl fo E_gg%_l_ - expl08(x+a) — (n+ 1) h(DA(D] 6} duC:)
= Kfpl fa e ™du(x)} - [gg"lggijz - exp{a®+p(0) —(n+1) [Fh(t)dt} do
=Kfeo Lo | exp{a®+p(6) —(n+1) i h(t)dt}de. (2.16)

2.(8)
But,
g./(® = [ g(8) - exp{ —a8—p(® +(n+1) L h(t)dt} ]
= g@®+g® - {—a—p® +NQ+Dh®)} ] * expl —a8—p(®) + (n+1) Lh(t)dt}.
Hence, (2.16) becomes, using conditions (2.8) and (2.9) of Theorem 2.1,

B. < Kf®———[gg°l—8§]2— - exp{a8+p(B) —(qn+1 Fh(t)dt} d6
=KJ {g(8)+g(0) - [—a—p/(0)+ (n+Dh(®)]}?
% g(6) - exp{ —aB—p(®) +(n+1) S h(dt}
- exp{ —a®—p(0) +(n+1) f h(t)dt} a6
=Kj {g(8)+g(@) - [—a—p(8)+(n+Dh(O)]}* o
0]

g(6)
<K { fp—EBL o415 6(0) - [-a=p @)+ (n+ DA(O) a0

' <o (2.17)
Now, recall that, from (2.14),
B. = fib(x) du(x) for n>1,

where, for each x € A and n > 1,

— Ix(gu’) . Ix(go"hnz) 2, . 2
b.(x) = [ L) ERTD) I*- L(g. - D).

Then using the condition (II) of Theorem 2.1 yields, for all x = A,

b.(x) = 0 as n —> . (2.18)
Hence, by the Dominated Convergence Theorem, (2.17) and (2.18) give

B, 0asn—> . (2.19)
Therefore, from(2.11), (2.13), and (2.19), we have

A, > 0asn— o,
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When ® = R', we use the sequence {h.} given in Brown and Hwang(1982) such that

_ 1 . lel <1
h(8) = {0 . lel>1
and
1 , ol L1
h(0) = p— el gl < (2.20)
In(n)
0 , 18l >n, n=2,3,-.

Also, when ® C R/, the proper subset, we take the sequence {h.} given in Brown and Hwang
(1982) such that

m(6) = {(1) : ﬁéi
and
(1 . A1
h.(8) = 1'1— % , 1<AKn (2.20)
0 , A>n, n=2,3,.

where A= N\*(0) =In’|0].
Note that the sequences (2.20) and (2.21) satisfy the conditions (1), (II), and (II) of
Lemma 2.1. Then, we have the following corollaries as special cases of Theorem 2.1 :

Corollary 2.1 Let ® =R'. If

g(0)
fes Tl o1V <= (2.22)

where S={06: | 0] <1} and aVb = max(a,b), and the conditions (2.1), (2.8), and (2.9)
of Theorem 2.1 are satisfied, then

X+a + L(g.")
n+1 (n+1D L(g)

is admissible for estimating h(6) under squared error loss.

8(X) =

Proof . It suffices to show that if (2.22) holds, then the condition (2.7) of Theorem 2.1
is satisfied. Now, for h,(8) in (2.20), we have

(@) = = —n9 =2,3,
h.'(6) T ey X (101D . n=2.8,

where x:(y) = t (1) ’ zzg

Hence,

[he()]r = — &

mx[,.nj< le 1)
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1
SToTrm(roTve Xaallel)
< 1 (lel)

=TTerm(lel V) fue

and clearly [h./(6)]*— 0 as n— «. Therefore, by the Dominated Convergence Theorem, the
condition (2.7) of Theorem 2.1 is satisfied.

Coroliary 2.2. Let ® R!, the proper subset, If

. g(0)
Jos T8 T AR® WA@VD 0 (2.25)

where S'=1{90 CAO) <1 }, and the conditions (2.1), (2.8), and (2.9) of Theorem 2.1 are
satisfied, then

X+ta L(g,")
n+1 (n+1D L(g)

is admissible for estimating h(8) under squared error loss.

8:(X) =

The proof of this Corollary is similar to that of Corollary 2. 1.
3. Examples

In the following examples we use, respectively, Corollaries 2.1 and 2.2 for ® = R' and
® ¢ R'. For simplicity we consider prior distributions with densities of the form g(8) = exp
{a0+p(0) — (n+1) ffh(t)dt} for which the conditions (2.8) and (2.9) of Corollaries 2.1 and

2.2 are equivalent.

Example 3.1: Let X~ N(8,1), 6 € @ = R'. Then, p(6)=1(1/2)6*. We wish to estimate
h(8) =6* under squared error loss where k is an odd positive integer. In this case, g(8) =

exp {00 + ;62 ——I{l——:% 0“'}, where, without loss of generality, we take d=0. Since g.(6)
=1, §X) = f:__;l, ae R, n(#1) € R It can be easily shown that for x € R/,

L(g) = f % exp{8(x+a) — Jk::__—i—-—e"“} do < oo
ifa R'and n> —1 for all positive odd k’s, and hence §;(X) = (X+a)/(n+1) is the generali-
zed Bayes estimator of 6%, k a positive odd integer, if « € R' and n > —1. Now, look at the
conditions (2.9) and (2.22) of Corollary 2.1. Simple algebra shows that (2.9) is satisfied for
either =0, n=0 or o € R’, n >0 when k=1, or o € R' and n > —1 when k> 3. In order
to check condition (2.22) it suffices to show the finiteness of

[ exp{a®+ (1/2)0* — [(n+1)/(k+1)]6*"!}
o> o1z’

But, it is easy to show that the above integral is finite if either =0, n=0 or a €R', n >0
for k=1, or ¢ € R, n > —1 for k> 3. Therefore, §;(X)=(X+a)/(q+1) is admissible for

de.
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estimating 6%, k a positive odd integer if either =0, n=0ora € R, n > 0fork=1, ora € R',
n > —1 for k > 3. These results confirm those of Gupta(1966) for k=1, and Ghosh and Meeder
(1977) for k>3, respectively.

]
Example 3.2 Let X ~ Binomial [n, _1+e*e° 1,6 € @ = R'. Here, p(8) =n In(1+¢€"). It
0
is desired to estimate h(8) = (I _f —)* under squard error loss. In this case,
e

(n+1)e’
1te

where, without loss of generality, we take d=0. Since g.(8) = 1, §(X) = X+a)/(n+D.
Note that for all x=10,1,2,,n,

g(®) = (1+e)" "« explad + b,

L(g) =% (1+e)™ 7 - explo(x+a) + IFDE  4g
(1+e

— J‘ol yx+a—1 (1_y)n—(x+a) e(n'\"l)y dy
< if >0 and n>nta—1.

Hence, 8,(X) is the generalized Bayes estimator of h(8) with respect to gifa > 0 andn > n+a—
1. Now, consider the conditions (2.9) and (2.22) of Corollary 2.1. Then, simple algebra shows
that both (2.9) and (2.22) are satisfied if either a =0, n >n—1l,ora>0,1 > nta—1.

]
Hence, 8(X) = (X+a)/(n+1) is admissible for estimating h(8) = (1 :e"

error loss if either « = 0, 1> n—1, ora > 0 andn > n+a— 1. This result contains admissibility
of X/n, a result by Ghosh and Meeden(1981). It is interesting to note that fora = 0 andn = n—
1, 8(X) = X/n is not the generalized Bayes estimator with respect to g since for a = 0 or
n=n+a—1, L{(g) = o for x =0 or n, respectively and hence condition (2.3) fails.

)? under squared

Example 3.3 . Let X~ Gamma (B,0) with the density

—_— ]
f(x30) = %x“" &, p>0(known), x>0 , 6 € ® = (~©,0) & R".
In this case p() = —pB - In(—0). We want to estimate h(8) = —1/6 under squared error loss.

Take g(8) = c(d) * (—@)"*' . e?, 3X —1, a € R}, where —o <d <0 and c(d) is a cons-
tant depending on d. Since g.(8) = 1, §,(X) = (X+a)/(n+1). Here, L(g) <o for all x >0
if @ >0 and 1> —2(n # —1). Hence, 8(X) is the generalized Bayes estimator of —1/8 with
respect to g if a >0 and n > —2(n# —1). Now, we want to check the conditions (2.9) and
(2.23) of Corollary 2.2. First, condition (2.9) is satisfied if either a = 0, 1 = -1 or a >0,
n > B. In order to check (2.23) it suffices to consider the finiteness of

J‘ (_e)n‘ﬂ"‘l ¢ e“e
PEB RO TS T ANE) (A (0))
where A%(8) = In*(—8). After simple algebra we can show that the above integral is finite

if either a =0, n=p, or a >0, n>Pp. Hence, §,(X) = (X+a)/(n+1) is admissible for
estimating h(8) = —1/6 under squared error loss if o >0 and 1> B.

do
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