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On the Cryptographic Significance of Bent Functions™”
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Abstract

After we introduce the properties of bent functions and Boolean functions satisfying the SAC
(Strict Avalanche Criterion), we made clear the relationship between two functions, i.e.,
all Boolean functions satisfying the maximum order SAC are always bent and any bent function
satisfies at least the O-th order SAC. Bent functions will be useful to implement cryptographic
functions like S-boxes of block cipher, nonlinear combiners, efc. But due to their 0/1 unbalance
and their existence for only even number of input bits, bent functions have some restrictions

to use as a building block for constructing bijective cryptographic functions.

* A3, FFHAFADTAE
% % This paper is a part of the author’s Ph. D. dissertation, “A Study on the Construction and Analysis
of Substitution Boxes for Symmetric Cryptosystems,” Dec., 1990, Yokohama National Univ., Japan.
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1. Introduction

Recently, there has been a good deal of interest
in families of Boolean functions called “bent”, pro-
posed and defined by Rothaus” in coding theory®,
threshold logic design'®, spread spectrum commu-
nications®, efc. In particular, bent functions have
been given great attention in cryptography'’.

For the good S(ubstitution)-box design of block
cipher, on the other hand, Webster and Tavares”
proposed the concept of Strict Avalanche Criterion
(SAC) - defined in Section 2 - in order to combine
the notions of the avalanche effect” and the comple-
teness® .

We have conjectured'® that there is an interes-
ting relationship between bent functions and Boo-
lean functions satisfying the SAC. In this paper,
after we suggest the similar properties between
bent functions and Boolean functions satisfying the
SAC, we will show that the conjectured relation-

ship is true.

2. Notation and Definitions

Let Z denote the set of integers and ZZ de-
note the » dimensional vector space over the finite
field Z;=GF(2). Also ® denotes the addition over
ZZ, or, the bit-wise exclusive-or.

Throughout this paper, C;(") denotes an »# dime-
nsional vector with Hamming weight 1 at the i-th
position. | - | denotes the cardinality of a set
or the absolute value of a real number and x - w

denotes the dot product of x and w, defined as
x w=xw; D xw: D - D xawn.

Let us define one of the most important criteria

to design a cryptographic function.

Definition 1(SAC) We say that a function ' Z,
— Z, satisfies the SAC, if for all i (1<i<n) there
hold the following equations :

(n)

Eﬂf(x) @ fx® =@, 27, e, 207D,

If a function satisfies the SAC, each of its output
bits should change with a probability of one half
whenever a single input bit is complemented.

If some output bits depend on only a few input
bits, then, by observing a significant number of
input-output pairs such as chosen plaintext attack,
a cryptanalyst might be able to detect these rela-
tions and use this information to aid the search
for the key.

Forré® extended this definition of the SAC into
a higher order SAC.

Definition 2(1-st order SAC) A function f: Z, =
ZZ' is said to satisfy the 1-st order SAC if and only
if

* f satisfies the SAC, and

* every function obtained from f by keeping the
i-th input bit constant and equal to ¢ satisfies the
SAC as well for every i € {1, 2,
c=0 and c=1.

Naturally, the SAC defined in Definition 1 can
be said of the 0-t2 order SAC too. To verify whe-

ther an #-bit input Boolean function satisfies the

o, n}, and for

1-st order SAC or not, at most n+# * (n—1) che-
cks are required. » checks correspond to the 0-
th order SAC and » * (n—1) checks correspond
to the 1-t2 order SAC. This definition can be exte-
nded to the k-th order SAC where 1<k<n—2 if
k input bits of f(x) are kept constant.

Definition 3(k-th order SAC) A function ' Z,
- Z: is said to satisfy the k-th order SAC if and
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only if

* f satisfies the (k—1)-th SAC, and

* any function obtained from [ by keeping k of

its input bits constant satisfies the SAC as well(this
must be true for any choice of the positions and of
the values of k constant bits).
Therefore, verifying whether an #-bit input Boo-
lean function satisfies the k-th order SAC or not
requires at most ntn * (n—1+() (n—2)+ -
+(Z) (n—k) checks.

Afterward, when we say a function satisfying
the SAC without specifying the order, the function
at least satisfies the 0-th order SAC. Moreover,
if an »-bit input Boolean function satisfies the (n—
2)-th order SAC, the function is referred to as
a Boolean function satisfying the maximum order
SAC in the sense that the (n—2)-th order SAC
is maxirally achievable in Boolean functions.

Rothaus” defined the bent functions as fol-

lows:

Definition 4(bent function) A Boolean function g
(x) IZ: = Z,, n=2l, is said to be bent if all the
Fourier transform coefficients G(w) of (—1)*'° defi-

ned as for all wEZZ

1
Glw)=—= % (=12~ (D
VZ xe

have unit magnitude i.e.,
| Glw) | =1. (2

Since the Fourier transform of a bent function
has unit magnitude, the bent function is very useful
to implement the code division multiple access®'™

in spread spectrum communications.

Definition 5(Walsh Transform) If f(x) is any reai-

valued function whose domain is the vector space
Z,, the Walsh transform of f(x) is defined as :

Flw)= ,E‘zgf(x‘) S (=D

where w e Z;'
The function f(x) can be recovered from F(w) by

the inverse Walsh transform .

=2~ Z, Fw) - (—1~

The Walsh transform and its inverse (both defi-
ned for real-valued functions) may be applied to
Boolean functions if their values as the real values
0 and 1.

3. Relationship between Bent Functions
and Boolean Functions Satisfying

the SAC

For symmetry reasons, it is often convenient
to map a 0/1 valued Boolean function f(x) into
an 1/ =1 valued Boolean function f(x). We denote

this mapping as
f®=1-2"fx) or flx)=(—DW

Forré” has proved that we can check the SAC
ness of f in term of its Walsh spectrum as fol-

lows :

Theorem 1 A function f(x) * Z, > {1, —1} fuifills
the SAC if and only if its Walsh transform F{(w)

satisfies

z (-D &L (B(w) =0 3
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for all i €11, 2, -, nl.

Also, we'® have proved that Boolean functions
satisfying the SAC have the following properties.
S1 Neither linear nor affine.

S$2 For n=1, or 2, any bijective function f from
Z, into Z, never satisfies the SAC.

S3 Let ¢ and g respectively denote an affine func-
tion from Z, and Z, into themselves with a per-
mutation matrix and an arbitrary binary vector.
Then a function f: Z; nd Z: satisfies the SAC if
and only if the composite function g o f o e - ZZ
- Z: satisfies the SAC.

On the other hand, it is known®® that bent func-
tions have the following properties :

Bl Only exist for an even number of input bits.
B2 Always unbalanced. (i.e., For n-bit input,
their Hamming weight is 277+ 27%71)

B3 The Walsh transform of a bent function is bent.
B4 Closed under linear of affine transform like S3.
B5 Exhibit maximum nonlinearity defined by Rue-
ppel®.

From the properties of these two functions, we
can see the similar points between them. We will
state the following theorem between the relation-
ship between bent functions and Boolean functions
satisfying the SAC.

Theorem 2 Let A, denote the set of all n-bit input
Boolean functions, B, denote the set of n-bit input
bent functions, and S, denole the set of n-bit input
Boolean functions satisfying the SAC. In particular,
we denote the set of n-bit input Boolean functions
satisfying the maximum order SAC by 5:‘“. The
relationship between these sets for even n can be stated

as

Proof © Since Adams and Tavares™ proved that all

Boolean functions satisfying the maximum order

SAC are bent, so it is clear that ézm < B

We will prove that B, €.5,. By Definition 4,
we insert any bent function into Equation(3) and
check the right hand side of the equation becomes
zero. Since bent functions have unit magnitude,
it is clear that bent functions always satisfy Equa-

tion(3). Thus we complete the proof.
4. Example
Here we give examples of two cases. A function
in Table 1 is bent and satisfying the SAC since

it satisfies Equation (2) and Equation(3).

Table 1! Example 1

£ wr | x/we | xs/ws | xd/we || ) | Flw) | 6(w)
0 0 0 0 0 4 1
0 0 0 1 1 —4 ~1
0 0 1 0 1 —4 —1
0 0 1 1 0 4 1
0 1 0 0 1 —4 -1
0 1 0 1 0 4 1
0 1 1 0 1 —4 -1
0] 1 1 1 0 4 1
1 0 0 0 1 —4 —1
1 0 0 1 1 —4 -1
1 0 1 0 0 4 1
1 0 1 1 0 4 1
1 1 0 0 0 4 1
1 1 0 1 0 4 1
1 1 1 0 0 4 1
1 1 1 1 0 4 1

A function in Table 2 satisfies the SAC but is
not bent, since it satisfies Equation (3) but does
not satisfy Equation(2). (i.e., it did not have unit
magnitude of its Fourier spectrum.)

By computer search, we suggest the cardinality
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of each sets in Table 3. This Table supports
Theorem 2. Note that Lloyd"’ proved that
sy | =20,

5. Concluding Remarks

We mace clear the conjectured relationship bet-
ween bent functions and Boolean functions satisfy-
ing the SAC. Therefore bent functions can be use-
ful to design cryptographic functions like S-boxes

of block ciphers, nonlinear combiners for stream

Table 2 ! Example 2

o/w | 2e/we | x5/ws | xdws | f(0 | FGw) | G(w)
0 0 0 0 0 8 2
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 0 1 1 0 0 0
0 1 0 0 1 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 1 8 2
1 0] 0 0 0 -8 -2
1 0] 0 1 0 0 0
1 0 1 0 0 0 0
1 0 1 1 0 0 0
1 1 0 0 0 0 0
1 1 0 1 0 4] 0
1 1 1 0 0 0] 0
1 1 1 1 0 3 2

Table 3 The cardinality of the set

n 2 | 3 4 5 6
4| | 16 | 256 | 65,536 | 2% 20
ls.l | 8| 64 | 4,128 | 7 ?
8, | 8 | NE 896 | NE 23%3%
lsy=1 | 8| 16 32 | 64 128

NE : Not Exist, * 5,425,430, 528

ciphers, efc.

However due to their 0/1 unbalance and their
existence for only even number of input bits. bent
functions have some restrictions to use as a buil-
ding block for constructing bijective cryptographic
functions.

Finally we suggest that it is still open problems
to generate and count all bent functions and all
Boolean functions satisfying the SAC for arbitrary

number of input bits.
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