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THREE-DIMENSIONAL INFINITE ELEMENTS
FOR WAVE FORCE EVALUATION ON OFFSHORE
STRUCTURES
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Abstract

The finite element technique incorporatating infinite elements is applied to analyzing the general three
dimensional wave-structure interaction problems within the limits of linear wave theory. The hydrody-
namic forces are assumed to be inertially dominated, and viscous effects are neglected. In order to
analyze the corresponding boundary value problems efficiently, two types of elements are developed.
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Three-Dimensional Infinite Elements for Wave Force Evaluation on Offshore Structures

One is the infinite element for modeling the radiation condition at infinity, and the other is the fictitious

bottom boundary element for the case of deep water. To validate those elements, numerical analyses
are performed for several floating structures. Comparisons with the results by using other available
solution methods show that the present method incorporating the infinite and the fictitious bottom

boundary elements gives good results.
1. INTRODUCTION

The linear wave diffraction theory is comm-
only used to evaluate the hydrodynamic forces
on large offshore structures. In general, there
are two types of numerical solution techniques
for the corresponding boundary value problems.
They are the boundary integral equation method
(BIEM) and the finite element method(FEM).
The boundary integral equation formulations
are more frequently adopted. However, the
methods fail at so-called critical or irregular
frequencies?, and are more difficult to be applied
to the cases with complex structural geometries
such as sharp corners. Therefore, the interest
in the alternative approaches based on the finite
element method has been increased considerably.

Application of the finite element method to
the evaluation of hydrodynamic forces on large
offshore structures have been extensively revi-
ewed by Mei? and by Zienkiewicz et al.?. There
are mainly four different approaches which have
been adopted in the finite element method to
model the radiation condition at infinity. They
are (1) boundary damper applied along the outer
boundary at finite distance from the submerged
solid body of interest'~®, (2) matching analytical
boundary series solutions®™'?, (3) mathing bou-
ndary integral solutions®!>!¥, and (4) infinite
elements.!*"17 The methods (2) and (3) are
commonly referred as the hybrid element method
(HEM) or the localized finite element method
(LFEM). The concept of an infinite element
has been adopted in this study.

Bettess and Zienkiewicz!® firstly applied a

two dimensional infinite element with exponential
decay to the horizontal plane problems of surface
waves. Later, Zienkiewicz et al® presented a
new infinite element with r~2 decay, which
is also a horizontal two dimensional element.
It was reported that this element gives more
accurate results than the infite element with
exponential decay and any boundary damper
elements. Lau and Ji'® suggested a three dim-
ensional 8-noded infinite element using the first
two terms of asymptotic expansions of the
progressive wave component in the analytical
boundary series solutions to construct the shape
functions in the radial direction. It was shown
that the element gives satisfactory results for
the fixed cases(i.e., diffraction problems), com-
pared with those by using the matching boun-
dary series solutions. However, this element
may be improper to the wave radiation prob-
lems, since the element does not include the
effects of evanescent wave components(standing
wave components or local disturbance terms)
which may be significant. Recently, an axisy-
mmetric infinite element was developed by the
present authors,!” which can be applicable to
the boundary value problems for the vertical
axisymmetric structures. The shape functions
for the element, in the radial direction, were
derived from the asymptotic expressions for the
progressive wave and the first evanescent wave
components in the analytical boundary series
solutions. The efficiency and validity of the
element have been proved through the example
analyses for the various cases of the vertical
axisymmetric structures.
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In this study, the axisymmetric infinite elem-
ent developed in the previous study!'” is expa-
nded to be applicable to the general three dim-
ensional wave-structure interaction problems. The
fictitious bottormn boundary element is also intr-
oduced in order to analyze the boundary value
problems in deep water, efficiently. To validate
the infinite and the ficitious bottom boundary
elements, the numerical analysis i1s performed
for several cases of the floating structures.
Comparisons with the results obtained by other
available solution methods show that the present
method incorporating the infinite and the fict-
itious bottom boundary elements gives good
results.

2. GOVERNING EQUATION

In this study, a regular wave train of ampl-
itude, ¢€,, and angular frequency, w, propagating
in water of constant depth, d, and psssing a
floating arbitrary shaped body is considered, as
shown in Figure 1. A Cartesian coordinate sys-
tem (x,y,z) with z measured vertically upwards
from the still water level is adopted. Also, a
cylindrical coordinate system (r,9,z) is employed
with r measured radially from the z axis, and
g from the positive x axis. The fluid is assumed
to be incompressible and inviscid, and the flow
is irrotational. The fluid motion, therefore, can
be described by a scalar velocity potential, ®
(x,y,z;t), which satisfies the Laplace equation

Vid(z,y,2;t) = 0 1)

The wave height is assumed to be suff-
iciently small for linear wave theory to be
applied. Consequently, ® is subjected to the
usual boundary conditions at the seabed(S,),
body surface(S,),and free surface(S) as follows.

ad
3 - 0; on Sy @)

ued - gAY HEZ
(] w?
5; = -;&; on Sj (3)
o
o Vai on S, @)

in which n=the outward unit normal to the
body surface, S, and V,=the velocity of the
body surface itself in the direction normal to
the surface; ie., n.

A wave train will cause the body to oscillate
in the six modes corresponding to surge, sway,
heave, roll, pitch, and yaw as indicated in Figure
2, and denoted here by subscripts 1, 2, 3, 4,
5, and 6, respectively. Each mode of motion

Figure 1 Definition Sketch

is assumed to be harmonic and expressed in
the from of §e™™'in which 7=time, and & =the
corresponding complex valued amplitude. The-
refore, ¥, is itself made up of surge, sway,
heave, roll, pitch, and yaw components, and is
given as

6 .
Vo = Re[} —iwn;e™™] ®)
=1

in which Re[ -] denotes the real part of the
argument, i= v'—1, and

N = Nz, N2 = Uy N3 = Ny

ng = (y~- yy)nz -(z- z,)n,; (6)
ns = (2= z)n, — (z— z5)n,;

ne = (z-2z5)ny —(V—y)ns

and n,, n, n,=the direction cosines of the
outward normal vector, 7, to the body surface

—137—



Three-Dimensional Infinite Elements for Wave Force Evaluation on Offshore Structures

with respect to the x, y, and z directions, res-
pectively; and x,, y,, z,=the coordinates of the
center of gravity of the body.

The velocity potential, ®, is also harmonic
and is made up of components associated with
the incident wave(subscript (), the diffracted
waves(subscript 7), and the radiated waves due
to each motion(subscript 1,2,--+,6). Then, ® many
be expressed in the usual way as

)

6
® = Rel[(do+d7+ 3 d;&)e ™
i=1

in which the velocity potential, ¢, is generally

o
a complex valued quantity. The velocity pote-
ntials associated with the diffracted and radiated
waves must satisfy the Sommerfeld radiation
condition at infinity!®.

r—00

in which k,=the wave number.

¢ = SURGE
£, = SWAY
&, = HEAVE
¢, = ROLL
&, = PITCH
t‘ - YAW

Figure 2 Definition of Body Motions

Substituting equations (5)—(6) into equation
(4), and separating out the terms corresponding
to the diffraction problem(j=0,7) and those
related to the radiation problem(j=1,2,---,6), the
body surface boundary condition can be expre-
ssed as

—iwn; forj=1,-.-,6 ®

—%oy, %%f-n, -8y, forj=7

in which ¢, is the incident wave potential given

by

do = _;&Me%(zmwww) 10
w  cosh(kod)

and % =the angle of wave attack measured
from the positive x-axis.

3. FUNCTIONAL

Solution for the boundary value problems
mentioned in the previous section may be obt-
ained using the finite element method (FEM).
Using the calculus of variations, the solution
to the problems described in equations (1)—(3)
(8),

which minimizes the following functional corr-

and (9) can be taken as the potential

esponding to the governing equation and the
associated boundary conditions:

1n

W) = [ 3V4;-ve;an

!

1wl
=2 (8;)%dS

1,

/S gkals)?ds:
0¢;

+ -/Su B ¢; dS,

in which Q,5,,S,, and S, denote the fluid domain,
the free surface taken along z =0, the radiation
boundary surface at infinity, and the body
surface, respectively.

To model the fluid domain efficiently, it is
divided into two regions: £}; is the inner finite
element region surrounding the solid body with
the outer cylindrical boundary surface at finite
distance, r,, from the origin, and Q, is the
infinite element region outside of £, as shown
in Figure 3. For the convenience of the finite
element formulation, the functionals for the
finite element region are defined by using the
Cartesian coordinate system, while those for the

infinite element region are defined by using the
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cylindrical coordinate system, which are repre-
sented as

1, : Finite element region

;@ Infinite element region

Figure 3 Division of Fiuid Domain

O Finite Element Region:

n@) = [ 3G+ &+ Sy,

[, 35eas;
/ a¢J¢J ds,

(12)

-+

O Infinite Element Region:

(¢;)

r2(

k.3 l(a"”)’ G2+ Cyan,

—Z(¢;)%dS
g (¢J) F (13)

1,
/S gikale;)ds,

4. DISCRETIZATION OF FLUID DOMAIN

To discretize the problem in the standard

finite element manner, it is necessary to desc-
rible the unknown potential, ¢¢, for an element
(e) in terms of the nodal parameter vector, {45,
and the prescribed shape function vector, {N°},

as follows.

95 = {N°}T{g2} (14)

The functional is now minimized with respect
to the nodal values { ¢,}, which gives

OMUL) _ <~ ((xetraer — 1 pen)
o)) = = (5N -17) = (0} a5)

in which [K{] Is element systemn matrix repres-
ented as

O Finite Element Region:

{ }{—}T]d9° (16)

- ‘/S; ;‘{NC}{NE}T({S;

O Infinite Element Region:

SOy

‘HW}{W}TWQ;

wz [ e e
/S; “(NN*YTds;

[Kf)

[ H Gy +

|

/s iko{NH{Ne)Tdse a7

and {FP{} is given by

1P} =— Ss‘;‘% {N}dS;, (18)

All of such element equations are assembled
to produce a set of global equations pertaining
to the fluid region. These can be written in
matrix form as

(K¢} = {P;} 19)

The matrix (K] is symmetric and banded,
with its half-bandwidth corresponding to the
interaction between each node and its immediate
neighbors.
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Finite Element Region

For the efficient modeling, the inner region,
Q, is divided into the upper and the lower
regions, The upper region is containing the solid
body, and it is discretized by using two isopa-
rametric elements; i.e., 20—noded brick element
and 8—noded plane element as shown in Figure
4. The Lagrange polynomials are used for shape

B-noded L

Ve $-noded X

a

“ 20-nooed FE~]| S 16-noded
N

Snoded OO
B-reted rm—/
13 ® Frde Boment
'3 @ Winite Dement
£88¢ = Ficlitious Bottom Boundary Dement
FBBE = fickitious Beltom Soundory infinite Dament

Figure 4 Modeling of Fluid Region

functions of the isoparametric elements. The
lower region is modeled by using the fictitious
bottom boundary elements(FBBE) as shown in
Figure 5. The FBBE is a 8 —noded element with
the shape functions as

{¢) B-noded FBBE (d) 6~noded FBBIE

Figure 5 Definition of Element Coordinate Systems

ey _ coshlko(d —d)(1 + O
{N°} = cos‘;[ko(d’_ o e (o)

with —1<é7<1 and —1<¢<0, in which {N(¢, 7)}
—the vector of the Lagrange shape functions
and dy=the distance from the sea water level
to the top of the FBBE’s. Equation (20) has
been derived from the z-directional behavior of
the progressive wave component in the analytical
boundary series solutions, which is approximately
expressed as

$; cosh[ko(z + d)] 21

The system matrices of the two isoparametric
elements for the upper region are constructed
using Gauss quadrature. On the other hand, the
system matrices of the FBBE’s are constructed
by performing the integration in the &-direction
analytically,.

Infinite element Region

In order to model the radiation condition at
infinity efficiently, and to avoid extensive fluid
domain discretizations for the case of deep
water, the three types of infinite elements are
developed. They are 16—noded and 6—noded
infinite elements (IE), and a 6—noded fictitious
bottom boundary infinite element (FBBIE) shown
in Figure 5. As shown in Figure 4, the outer
region, €, is modeled using these elements with
the shape functions derived from the analytical
boundary series solutions as

O 16—noded IE (0 S E < 00, -1 .<. 7I,C .<_ l):
Na(E{N(n.€)}

{N°} = ) (22)
No(6X{N(n, ()}

O 6—noded IE (0 <€ < o0):
N(E{N(m)}
Ny(){N (n)}

(N°) @3
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O 6—noded FBBIE

(0$£<°°l —ISWSI,—ISCSO):

(N} = cosh[ko(d — d;)(1 + 0l N(O{N ()}
cosh{ko(d ~ dy)] N IF ()
(24)

in which {(N(#£) and {N(7)} =the vector of the
Lagrange shape functions. N,&) and N,¢§) are
the shape functions in the radial(¢é) direction as

N, fo(€)
©1 Frd (25)

Ny(£) H(©)

in which f(§) and f,(§) represent the asymptotic
behaviors of the progressive and the first eva-
nescent wave components in the radial direction,
respectively, and [F] is the 2X2 coefficient
matrix associated with those wave components,
which are given by

i (26)
fo(€) = \/E_:‘_re'ko(fﬁ'..)-ef
He) = \/E:-_re-k'm'“) n
= 71r_eikor,, Vl-e_k"'°
' ) (28)

and e=the artificial damping parameter(0<e
« k), k,=the wave number for the evanescent
wave component, and r, and r,=the radial
distances to the inner and outer nodes of the
infinite elements from the origin as shown in
Figure 4. The artificial damping parameter(e)
in equation (26) has been introduced, to make
the integration in equation (17) in the radial(é)
direction bounded. After the integration is com-
pleted analytically, the value of & is taken to
be zero. The shape functions, N,(§) and N,¢),
have been derived from the asymptotic expre-

ssions for the progressive and the first evanes-
cent wave components in the analytical boun-
dary series solutions such as

6 ~ ao%e“‘"'+a1%e"“' 29)

It is noted that the corresponding shape fun-
ctions satisfy the radiation condition at infinity.

The system matrix for the infinite element
is constructed by performing the integration in
the infinite direction analytically, so that com-
putational efficiency may be achieved.

5. NUMERICAL RESULTS AND DISCUSSIONS

A three dimensional finite element computer
program incorporating the infinite and the fic-
titious bottom boundary elements has been
developed, and applied to several floating stru-
ctures in order to illustrate its validity. The
accuracy and efficiency of the algorithm depend
on the location of the interface between the
inner finite element and the outer infinite ele-
ment regions, and the distance to the fictitious
bottom boundary elements from the body sur-
face. The numerical experiments were performed
to determine the criteria for the proper distance
to the infinite and the fictitious bottom boundary
elements using an axisymmetric finite element
formulation by the present authors in the pre-
vious study.'” The numerical results indicated
that the distance to the infinite elements should
be greater than (.3 times of the incident wave
length, and the distance to the fictitious bottom
boundary elements should be greater than 0.1
5 times of the incident wave length from the
body surface. In this study, using those criteria,
the example analyses are carried out for the
floating square barges in finite and infinite
depths.
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(a) Geometry and Element Meshes

4 ©  Yue (HEM)
— Present siudy

(b) Horizontal and Vertical Force Coefficients

Hy
p(20)*n

sulza)n |
054

0.0 T
)] 1

Figure 6 Results for a Floating Square Barge with h/a=0
.5, dla=1.0, and $=0°

Floating Square Barge in Finite Depth

Figure 6 presents the analysis results for a
floating square barge with A/a=0.5, dla=1.0,
and ¥ =0°(Figure 8(a)), in which a and h=the
half width and the draft of the barge, d=the
depth of water, and ¢ =the angle of the inci-

dent wave attack, Unlike the previous examples,
this case must be treated solely as a three
dimensional problem. Yue et al.!9!V reported
the results for the case of a fixed barge(ie.,
diffraction problem) by using a hybrid element
method (HEM).

In this study, the diffraction and radiation
problems are analyzed by using the element grid
system with 371 nodes. The exciting force
coefficients and the added mass and damping
coefficients are calculated for various frequencies,
and given in Figures 6(b) and (c), respectively.
Figure 6(b) indicates that the present method
gives satisfactory results compared with those
using a hybrid element method by Yue et al.

Floating Square Barge in Infinite Depth

Figure 7 presents the surge and the heave
responses for a floating square barge with #fa
=8/9, dla=o0, and #%=0°. The fluid domain
is modeled by using the element grid system
with 633 nodes as shown in Figure 7(a). The
present results are compared with those obtained
using a three dimensional Green's function by
Garrison,'¥ and also with experimental results
by Faltinsen et al?” It is found that the present
method incorporating the infinite and the fict-
itious bottom boundary elements gives the
satisfactory results except for the slight discre-
pancy of the resonance frequency for the heave
motion. The discrepancy is caused by the dif-
ferences of the heave added mass coefficients
(¢3;) between the present results and the pub-
lished results by Garrison. the heave added mass
coefficients (s4,) obtained in this study are found
to be smaller than those of Garrison approxim-
ately by 10%. The differences might be caused

by the shape functions of the fictitious bottom
boundary element in the vertical direction(see,
equation (20))employed in this study. Further
study is needed to investigate the cause of the
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(b) Surge(é,)) and Heave(l£,)) Response

Figure 7 Hydrodynamic Responses of a Floating Square
Barge with h/a=8 /9, d/a==c0, and $=0°

discrepancy.
6. CONCLUSIONS

In this paper, the finite element technique
incorporating infinite elelemts is applied to analyz
ing the general three dimensional wave-structure
interaction problems. Two types of elements
are developed to discretize the fluid domain
efficiently. One is the infinite element for
modeling the radiation condition at infinity, and
the other is the fictitious bottom boundary ele-
ment for an efficient discretization of the fluid
domain for the case of deep water. The shape

functions for the infinite element, in the radial
direction, are derived from the asymptotic exp-
ressions for the progressive wave and the eva-
nescent wave components in the analytical
boundary series solutions.

Verification of the elements developed in this
study is carried out utilizing several kinds of
floating structures. Comparisons with the results
from other available solution methods and exp-
erimental data indicate that the present method
incorporating the infinite and the fictitious
bottom boundary elements give good results.
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