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다단계 보상 기능을 갖는 통계적 방법에 의한 음소 분할

A Statistical Approach to Phoneme Segmentation 

through Multi-step Compensation
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요 약

본 논문에서는 통계적방법에 의한 음소의 자동분할에 관한 알고리즘을 제안하였다.

우선 음성신호를 AR모델로 모델링한 후 스펙트럼이 변화하기 전과 변화한 후의 모델에 대해서 likelihood ratio와 

mutual information을 고려한 test statistics로 부터 모델 계수가 변화하는 곳을 예측해 내고 이 곳을 음소의 경계로 판단 

한다. 이 경우 검파되지 못하는 대부분의 음소는 짧은 자음이었으며 Signed Front-to-Back maximum area Ratio(SFBR) 

을 이용하여 개선하였다. 또한 false alarm error-j? 줄이 기 위해 누 segment 사이의 distortion으로 부터 smoothing을 하였다.

3명의 화자에 대한 실험 결과 non-detection error는 10%, false alarm error는 20% 정도로 나타났지만 화자간에 알고리 

즘의 성능 변화가 거의 없으며 특히 분할된 경계치 분포는 전체 음소의 90% 이상이 이 30ms이내에 위치하였다.

ABSTRACT

A statistical approach to automatic phoneme segmentation is presented in this paper. The proposed segmentation 

algorithm is an extension of the divergence test using the test statistics. by which we can detect abrupt changes in 

speech Signal that are considered as phoneme boundaries. In order to reduce the errors in phoneme boundary detection, 

some compensation techniques, such as turbulence noise detection and smoothing using a distortion measure, are inco­

rporated in the proposed segementation algorithm, thus resulting in rediction of non-detection and false alarm error.

Computer simulation is done to test the performance of the proposed algorithm for speaker independent speech 

recognition. Error rates of about 10% and 20% are obtained for non-detection errors and false alarm errors, respective 

ely.

I. INTRODUCTION

Continuous speech recognition systems can be 

classified as the two categorites⑴.One begins with 

subword units and successively combines them to 

larger lingusitic units. This is called the bottom-up 

system. The top-down system reverses the process 

by predicting sentences and successively hyperthesiz 

ing phrases, words and phonemes that make up 

the sentences, and then comparing the predicted 

patterns with input patterns. In the bottom-up 

system, the performance of ap acoustic - phonetic 

processor which encodes input speech signal into 

a string of discrete subword units is critical to the 

whole performance of the speech recognition sys­
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tem. Several approaches have been proposed to 

segment input speech into phoneme units and can 

be classified in two calsses<1W2), The first one 

performs jointly both labeling and segmentation 

using the acoustic cues extracted from the input 

speech. The other one segments the input speech 

into phonemes prior to the labeling, based on some 

test statistics or other methods such as using 

heuristics, knowledge bases, and so on. One useful 

statistical approach to phoneme segmentation is 

the divergence test(2H3>. This test can detect the 

abrupt change between two AR models, by exam­

ining a distorition between these models. When 

we simply consider these abrupt changes as pho­

neme boundaries, there exist many errors in bou- 

ndar detection, such as omission or oversegment­

ation.

Our approach to speech segmentation is an 

extension of the divergence test based on test 

statistics. Prior to the divergence test, preprocessing 

of input speech is done by using a coarse vowe- 

1 / nasal segmentation algorithm. After the diver­

gence test, we employ a postprocessing stage for 

turbulence noise detection and smoothing with a 

distortion measure. By incorporating the preproce­

ssing, postprocessing, and smoothing, we can 

improve the performance of the proposed speech 

segmentation algorithm by reducing the non-det­

ection 하】d false alarm errors.

II. SEGMENTATION BY THE DIVERGENCE TEST

The divergence test assumes an AR model of 

speech signal when the speech signal can be 

described by a string of homogeneous units. When 

we assume the parameters of an AR model change 

abruptly at some unknown time e, the observed 

scalar signal 公사 may be represented as

V«=^2Vn-I + g" (1) 

韓國音響學會誌w卷5號(1991)

where

晶너)=履, l^i^p

彼=时 for n<0 (2)

and

서, iWdMp

彼=(方2 for n<e (3)

{%} is the white noise sequence or the innovation 

process of AR model. The AR parameter vectors 

of the models 0 and 1 will be denoted by

N= (a《，…,窈)，顶=0,1 (4)

and the past observations up to n-1 by

Y* 1=(/ I/--,yi) (5)

In this case, if the paramenters of the models 

as indicated in Fig. 1, are supposed to be known 

both before and after the model change, the only 

unknown variable is the time e of the model 

change.

In this case, if the paramenters of the models 

as indicated in Fig. 1, are supposed to be known 

both before and after the model change, the only 

unknown variable is the time Q of the model 

change. In real situation, however, identifeation 

of AR model parameters, and estimation and 

detection of the time Q of the model change should 

be carried out simultaneously, Therfore, the obse­

rved signal {yn} is filtered through identified AR 

filters and changes in the innovation seq니ences 

{en0} and {e『} are used for a proper cumulative 

sum test to detect the model boundary.

Let the signal {外} be described by the condit­

ional densities 시»") and g'.서¥"“)before and 

after the model change, respectively. And let us
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Ho

n-L n
Fig.1. Analysis windows of models Ho and for the div- 

ergence test. The parameters of the model HQ are 
calculated at each sampling instant i=l to n where 
n is the present observation time instant. The para­
meters of the model H、are obtained from the obse­
rvations (y„-A+„ v«f by block analysis.

consider the following cumulative sum test by­

taking into account of not only the mutual entropy 

between the two models but also their self-entr- 

opies(3).

A test statistic U» is defined as

U«=± Tt (6)

where T, is a test statistic with information and 

divergence between the two models and defined 

as

(b)
Fig.2. Characteristics of * and Ch. (a) Determination of 

the estimated time of model change n=0 based on 
variation of Un. (a) Detezmination. of the estimated 
time of model change n=r based on variation of r

世구ay _1°K此:)
* 5 ' gg°(yyi)ay ggO(),,|yT)⑺ 1. Divergence Test Algorithm

In the Gaussian case, T> can be written as

『,능〔2肯 T1+时:이零 一(夢一1)]

(8)

Since the conditional drifts of Un before and 

after the change are zero and negative, respectiv­

ely, the time Q of the -model change can be det­

ected when Un becomes negative. In real implem­

entation, e is detected at A as indicated in 

Fig 2(a), allowing some delay for detection. The 

delay can be compensated with the aid of Hink- 

ely's stopping rule as shown in Fig. 2(b)⑶.

1) Initialization

The prewindowed recursive least square (PRLS) 

algorithm is applied to obtain the stable model 

parameters of Ho for n=l, ••*,  L and the model 

change within the first L points can not be det­

ected.

2) Calc니ate test statistics T< and Un.

Calculate test statistics {T；} and {Un}, a cumulative 

sum with Hinkely's stopping rule described by

(T，+tf) (9)
"이

where d is fixed drift determined a prior

3) Detect the time r of the model change.

Choose the time r satisfying the equation(Fig.
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2(b))

max Or— Un>^ (10)

The parameters of the model Ho is ident迁ien 

by the PRLS algorithm. The model H、is obtained 

from speech signal of a fixed window size L by 

LPC autocorrelation method. The e(° and (邢 are 

the forward prediction error and cost function 

divided by n, respectively. The 异 and 妒 are 

obtained from prediction error and gain divided 

by L in the LPC analysis, respectively.

II. Performance of The Divergence Test

2.1. Data Base

Among phonetically balanced 10() word vocabu - 

laries spoken by 3 male speakers, 40 words are 

selected for this simple experiment. The input 

speech is sampled at 10kHz and end-point-detec­

tion is done by using zero-crossing rate (ZCR) and 

energy parameters.

2.2. Performance Criteria

Performances of the divergence test are obtained 

for false alarm errors. non-dtection errors and 

boundary alignment errors.

1) False alarm errors occur when a phoneme 

is segmented into two or more ones.

2) Non-detection errors occur when a phoneme 

boundary is not detected but really exists.

3) Boundary aligment errors represent the dif­

ference between the detected boundary and the 

actual boundary of the phoneme.

2.3. Experimental Results

In this simple experiment, we use L=200 (20ms), 

<5=0.5, 人=60 and the 16-th order AR mod이 Fig. 

3 and 4 show examples of the segmentation results 

by using the divergence test. The waveform in 

Fig. 3(a) shows the word / onl /, the Korean for 

Mtoday". As shown in Fig. 3(b), both the false 

alarm error and the non-detection error do not 

occur in spite of the large boundary alignment 

error. On the contrary, as shown in Fig. 4(b), 

corresponding to U» of the word /pangu/, the 

Korean for "research", the false alarm error in / 

n / and the non-detection error in /g/ occur.

For the vocied plosive / g /, we can observe 

that n has more drift, however, the variation.

4000 6CC0 
time

ecoc

Fig.3. Results of the divergence test on the word / onl /. 
(a) Speech waveform, (b) Plot of the cumulative 
sum

Fig.4. Result of the divergence test on the word / y'ngu /. 
(a) Speech waveform, (b) Plot of the cumulative 
sum U.
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of 3 is below the threshold 人.The similar phen­

omena are observed, on the whole, for consonants. 

This can be compensated with the signed front- 

to-back max-imum area ratio(SFBR) feature,4'. 

Also, false alarm error in nasal / n / can be 

improved with the aid of smoothing using a dis­

tortion measure between adjacent segments.

The first row of Table 1 아lows the results of 

segmentation by only applying the divergence test. 

The error rate of 10.59% among the total 24.11% 

error rate for the non-detection error is the system 

error which can not be recovered because the 

phonemes, whose length is less than 20ms, can 

not be detected.

T저ble 1. Comparison of Divergence test and two Compen­
sations.

Method No.of Phonemes Non-detection error False alarm error

Divergence test 141 34(24.11%) 14(9.92%)

Turbulence noise 

detection
141 24(17.02%) 20(14.18)

Smoothing 141 24(17.02%) 11(7,80%)

ID. TURBULENCE NOISE DETECTION

In order to redice the non-detection error, the 

SFBR parameter, early proposed by Wakita⑷，is 

introduced. SFBR is defined as

SFBR—sign (名)• FBR (11) 

where FRR= max{/牝

max{4/+i, …，4싸
and 4(i=0,…，M+

1 ：/爲=8)is the area of the i-th section of the 

vocal tract in acoustic tube modeling of speech 

signal and 屑 is the first reflection coefficient of 

the acoustic tube model.

The back vowels and turbulence noises have 

large FBRs. The turb니ence noise has 妃＞0 since 

the frequency characteristics of that represent more 

energy in the high frequency region than others. 

For the back vowels, however,稣〈0. The flow chart 

for turbulence noise detection is shown in Fig. 5 

.After this compensation, the non-detection error 

rate is reduced to 17.02% and the false alarm error 

rate increases to 14.18%. Therefore, it is necessary 

to adopt a new compensation technique to reduce 

the false alarm error.

Fig.5. Flow chart of the turbulence noise detection algori廿im

田.SMOOTHING BASED ON A DISTORTION 

MEASURE

This smoothing is used to decrease the false 

alarm errors. A distortion between adjacent segm­

ents obtained from so far. The adjacent segments 

are then combined into one if the distortion betw­

een them is below a certain threshold.

In our smoothing method, we select gain-normaliz 

ed Itakura-Saito distortion measure(dts) as the 

distortion measure between speech segments. 
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However, since 击、、is asymmetric, it is not suitable 

for our purose. Therfore, we use d、=

where and di^2 are calculated in reverse order. 

When d.、〈Q85 for adjacent segments, these segm­

ents are smoothed to make a segment, and then 

this process is repeated until there are no adjacent 

segments satisfying ds〈 0.85. Using this smoothing 

method, the non-detection error rate is not chan­

ged, on the other hand, the false alarm error rate 

is reduced to 7.8%. This result reveals the impr­

ovements of 2% and 8% comparing with those 

of the divergence test and the turbulence noise 

detection, respectively.

V. COARSE VOWEL / NASAL SEGMENTATION

In the divergence test, the choise of the param­

eter values of and A. is important to improve 

the performance of phoneme segmentation. It is 

perferable to choose different values for vowel / 

nasal segment and others. The vowel / nasal seg­

mentation uses the total energy. ZCR, and four 

frequency band energies as the feature sets⑸.Here 

we choose d=o.2, A=40 for vowel / nasal sounds 

and d、=0.8,人=80 for others.

VI. COMIPUTER SIMULATION AND DISCUSSION

A block diagram for our phoneme segmentation 

method is shown in Fig.6. Computer simulation 

is done to test the speaker * independence of our 

algorithm using speech data extracted from 3 male 

speakers. The segmentation results on this exper­

iment is shown in Table 2. From the simulation 

results, the two-step compensation can reduce 2 

% and 10% of non-detection errors and false alarm 

errors, respectively. Table 3 shows that, conside­

ring the number of short segments, the non-det­

ection error rate is really nothing but 4.96%. The

Fig.6. Block diagram of the proposed phoneme segmentation 
algorithm

Table 2. Results on the phoneme segmentation.

Speaker

No.of

phoneme

Divergence 

test

Turbulence 

noise detection

;ND FA ND FA ND FA

A 136 15 43 13 45 14 25

B 133 16 38 9 43 10 30

C 134 16 30 15 34 16 24

3()3
47 111 37 122 40 79

(11.66%) (27.54%) (9.18%) (30.27%) (9.93%) (19.6%)

ND : Non-detection error
FA : False alarm error

Table 3. The number of short segments and oversegments 
in false alarm error.

Speaker
No.of 

short phonemes
Divergence 

test
Turbulence 

noise detection
Smoothing

A 10 104/43 113/38 56 / 30

B 8 93/45 113/43 64/34

C 9 77/25 84/30 51/24

average number of segments in case of oversegm­

entation when false alarm errors occur is reduced 

from 2.47 to 2.16. Finally, we observe the boundary 

alignment errors. Fig,7(a) 아lows the histogram 
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of the segmentation boundary errors versus time 

(ms) for speaker A. For example, a bar on the 

time axis -10ms indicates that the probability the 

time diference of an actual boundary from the 

segmented boundary is within 10ms, is 0.43. If we 

allow the difference within ± 30ms, the correct 

segmentation rate becomes 90% and the rate 

becomes 99% as shown in Fig.7(b) if we allow± 

50ms difference.

(b)
Fig.7. Distribution of the boundary alignment errors, (a) 

Histogram of the correct segmentation boundaries 
according to the time of the boundary diference 
between the actual boundary and segmented boundary 
for speaker A. (b) Cumulative conection rate of the 
proposed phoneme segementation system with respect 
to the time of the boundary diference. 

ocessmg of the divergence test. Also, a coarse 

vowel / nasal segmentation algorithm is used for 

preprocessing to give different thresholds to the 

divergence test. This effort imporves segmentation 

results in that non-detection errors and false alarm 

errors are reduced compared with the segmentation 

system using the divergence test alone. From the 

computer simulation results of the proposed segm­

entation method, the error rates of 10% and 20%' 

are obtained for the non-detection errors and the 

false alarm errors, respectively. And this experiment 

reveals that performance improvements of 2% and 

10% for the non-detection errors and for the false 

alarm errors are obtained.
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W. CONCLUSIONS

In this paper, we propose an automatic phoneme 

segmentation method based on the divergence test. 

Two step compensation techniques, turbulence noise 

detection and smoothing, are used for the postpr-
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