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A Statistical Approach to Phoneme Segmentation
through Multi-step Compensation
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ABSTRACT

A statistical approach to automatic phoneme segmentation is presented in this paper. The proposed segmentation
algorithm is an extension of the divergence test using the test statistics by which we can detect abrupt changes in
speech Signal that are considered as phoncmce boundaries, In order to reduce the errors in phoneme boundary detection,
some compensation techniques, such as turbulence noise detection and smoothing using a distortion measure, are inco-
rporated in the proposed segementation algorithm, thus resulting in reduction of non-detection and false alarm error,

Comnputer simulation is done to test the performance of the proposed algorithm for speaker independent speech
recognition. Error rates of about 10% and 20% are obtained for non-detection errors and false alarm errors, respectiv-

ely.

I. INTRODUCTION system. The top-down system reverses the process

by predicting sentences and successively hyperthesiz

Continuous speech recognition systems can be
classified as the two categorites®, One begins with
subword units and successively combines them to

larger lingusitic units, This is called the bottom-up

s FakeolEy Ao R Azt

ing phrases, words and phonemes that make up
the sentences, and then comparing the predicted
patterns with input pattems. In the bottom-up
system, the performance of ap acoustic-phonetic
processor which encodes input speech signal into
a string of discrete subword units is critical to the

whrle performance of the speech recognition sys-
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tem. Several approaches have been proposed to
segment input speech into phoneme units and can
be classified in two calsses™®, The first one
performs jointly both labeling and segmentation
using the acoustic cues extracted from the input
speech. The other one segments the nput speech
into phonemes prior to the labeling, based on some
test statistics or other methods such as using
heuristics, knowledge bases, and so on, One useful
statistical approach to phoneme segmentation is
the divergence test®®, This test can detect the
abrupt change between two AR models, by exam-
ining a distontion between these models. When
we simply consider these abrupt changes as pho-
neme boundaries, there exist many errors in bou-
ndar detection, such as omission or oversegment-

ation,
Our approach to speech segmentation is an

extensioﬁ of the divergence test based on test
statisties. Prior to the divergence test, preprocessing
of input speech is done by using a coarse vowe-
1/ nasal segmentation algorithm, After the diver-
gence test, we employ a postprocessing stage for
turbulence noise detection and smoothing with a
distortion measure. By incorporating the preproce-
ssing, postprocessing, and smoothing, we can
improve the performance of the proposed speech
segmentation algorithm by reducing the non-det-

ection apd false alarm errors.

II. SEGMENTATION BY THE DIVERGENCE TES1

The divergence test assumes an AR model of
speech signal when the speech signal can be
deseribed by a string of homogencous units, When
we assume the parameters of an AR model change
abruptly at some unknown time g, the observed

scalar signal {v.} may be represented as

_‘l'-=§: a,""] Vu—s ~+ én (1)

ol=var{es)
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where

a™M=a® 1Sisp

ol=as  for n<g (2)

and

a"=a!, 1SiSp
gi=a} for n<g (3)

{e-} is the white noise sequence or the innovation
process of AR model. The AR parameter vectors
of the models 0 and 1 will be denoted by

= (a/,a}, }=0,1 (4)
and the past observations up to n-1 by
¥ =) {(5)

In this case, if the paramenters of the models
as indicated in Fig, 1, are supposed to be known
both before and after the model change, the only
unknown variable is the time g of the model

change.
In this case, if the paramenters of the models

as indicated in Fig. 1, are supposed to be known
both before and after the model change, the only
unknown variable is the time g of the model
change. In real situation, however, identifcation_
of AR model parameters, and estimation and
detection of the time ¢ of the model change should
be carried out simultaneously, Therfore, the obse-
rved signal fy»} is filtered through identified AR
filters and changes in the innovation sequences
e’ and f{ed} are used for a proper cumulative
sum test to detect the model boundary.

Let the signal {y.} be described by the condit-
ional densities g°(v»lY"") and g'(3-i¥") before and

after the model change, respectively. And let us
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Fig.1. Analysis windows of models H, and X, for the div-
ergence test. The parameters of the model A, are
calculated at cach sampling instant i=1 to n where
n is the present observation time instant. The para-
meters of the model ¥, are obtained from the obse-
rvations {ys-t+, -, m} by block analysis.

consider the following cumulative sum test by
taking into account of not only the mutual entropy
between the two models but also their self-entr-
opies™,

A test statistic U« is defined as

Lr"=}; T, (6)

where T, is a test statistic with information and
divergence between the two models and defined

as
-l 1 [R %0 |
Ti= Y!'-—l 1 { Y ) —1 {wY )
o1 log STy —loe ST )
In the Gaussian case, 7, can be written as

032 2
—(1+aF s a8l _(Z 1y

X o,

_L A
Ti > [2—021

(8)

Since the conditional drifts of U. before and
after the change are zero and negative, respectiv-
ely, the time ¢ of the 'model change can be det-
ected when U, becomes negative, In real implem-
entation, ¢ is detected at {/»{—A as indicated in
Fig 2(a), allowing some delay for detection. The
delay can be compensated with the aid of Hink-
ely’s stopping rule as shown in Fig. 2(b)*.

u A

(b)

Fig2. Characteristies of t’» and (i, {(a) Determination of
the estimated time of model change n=¢ based on
varation of s, {a) Detezmination. of the estimated
time of model change n=r based on variation of ¢{*

1. Divergence Test Algorithm

1) Initialization

The prewindowed recursive least square(PRLS)
algorithm is applied to obtain the stable model
parameters of H, for n=1, .-, L and the model
change within the first L points can not be det-
ected,

2} Calcutate test statistics Tiand U,

Calculate test statisties {T.} and {Ua}, 2 cumulative
sum with Hinkely's stopping rule deseribed by

C’»-—-E} (Ti+3) (9)

where ¢ is fixed drift determined a prior
3) Detect the time r of the model change.
Choose the time r satisfying the equation(Fig.
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2(b))

max U—>A (10)

The parameters of the model H, is identifien
by the PRLS algonthm. The model H, is obtained
from speech signal of a fixed window size L by
LPC autocorrelation method. The 2° and ¢, are
the forward prediction error and cost function
divided by n, respectively. The ¢' and &7 are
obtained from prediction error and gain divided
by L in the LPC analysis, respectively.

II. Performance of The Divergence Test

2.1. Data Base

Among phonetically balanced 1(X) word vocabu-
laries spoken by 3 male speakers, 40 words are
selected for this simple experiment. The input
speech is sampled at 10kHz and end-point-detec-
tion is done by using zero-crossing rate(ZCR) and

energy parameters,

2.2. Performance Criteria

Performances of the divergence test are obtained
for false alarm errors. non-dtection errors and
boundary alignment errors,

i) False alarm errors occur when a phoneme
is segmented into twe or more ones.

2) Non-detection errors occur when a phoneme
boundary is not detected but really exists.

3) Boundary aligment errors represent the dif-
ference between the detected boundary and the

actual boundary of the phoneme.

2.3. Experimental Resuits

In this simple experiment, we use L=200(20ms),
¢=(0.5, A=60 and the 16-th order AR model. Fig,
3 and 4 show examples of the segmentation results

by using the divergence test, The waveform in

HEEWHNE 10 % 5 (191

Fig. 3(a) shows the word /onl/, the Korean for
“today”. As shown in Fig. 3(b}, both the false
alarm error and the non-detection error do not
occur in spite of the large boundary alignment
error, On the contrary, as shown in Fig. 4(b),
correspondiﬁg to U. of the word /jangu/, the
Korean for “research”, the false alarm error in /
n/ and the non-detection error in /g/ occur.
For the vocied plosive /g/, we can observe

that 7’= has more drift, however, the variation,
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Fig.3. Results of the divergence test on the word /onl/.
(a) Speech waveform, (h) Plot of the cumulative
sum i,
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Fig.4. Result of the divergence test on the word /y'ngu/.
(a) Speech waveform. (b) Plot of the cumulative
sum i,
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of ['x is below the threshold A, The similar phen-
omena are observed, on the whole, for consonants,
This can be compensated with the signed front-
to-back max-imum area ratio(SFBR} feature®,
Also, false alarm error in nasal /n/ can be
improved with the aid of smoothing using a dis-
tortion measure between adjacent segments,

The first row of Table 1 shows the results of
segmentation by only applying the divergence test,
The error rate of 10.59% among the total 24.11%
error rate for the non-detection error is the system
error which can not be recovered because the
phonemes, whose length is less than 20ms, can
not be detected.

Table 1. Comparisen of Divergence test and two Compen-

sations,
Method Noof Phonemes § Non-detection e qfake alarm erpor
Divergence test 14t H(241%) 14(9.92%)
Turbulence noise 141 24(17.02%) | (1418}
detection
Smoothing 141 24017.02%) | 11(780%)

II. TURBULENCE NOISE DETECTION

In order to reduce the non-detection error, the
SFBR parameter, early proposed by Wakita®, is
introduced. SFBR is defincd as

SFBR=sign(k,) - FBR (11)

max{d., - Ap)

where FBR= max( Ay A}

and Ai{i=0, ---, M+

1:4,=c0) is the area of the i-th section of the
vocal tract in acoustic tube modeling of speech
signal and 4, is the first reflection coefficient of
the acoustic tube model.

The back vowels and turbulence noises have
large FBRs, The turbulence noise has #,)0 since

the frequency characteristics of that represent more

energy in the high frequency region than others.
For the back vowels, however, £,(0. The flow chart
for turbulence noise detection 15 shown in Fig. §
. After this compensation, the non-detection error
rate is reduced to 17.02% and the false alarm error
rate increases to 14.18%. Therefore, it is necessary
to adopt a new compensation technique to reduce

the false alarm error.
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Fig.5. Flow chart of the turbulence noise detection algorithm

V. SMOOTHING BASED ON A DISTORTION
MEASURE

This smoothing is used to decrease the false
alarm errors, A distortion between adjacent segm-
ents obtained from so far. The adjacent segments
are then combined into one if the distortion betw-
een them is below a certain threshold,

In our smoothing method, we select gain-normaliz
ed Itakura-Saito distortion measure(di) as the

distortion measure between speech segments.
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However, since di 1s asymmetric, it 1s not suitable

disyFdi?
2

where dw~, and dn~, are calculated in reverse order.

for our purose, Therfore, we use d.=

When 4.{0.85 for adjacent segments, these segm-
ents are smoothed to make a segment, and then
this process is repeated until there are no adjacent
segments satisfying d« ( (.85, Using this smoothing
method, the non-detection error rate is not chan-
ged, on the other hand, the false alarm error rate
is reduced to 7.8%. This result reveals the impr-
ovements of 2% and 8% comparing with those
of the divergence test and the turbulence noise

detection, respectively,

V. COARSE VOWEL / NASAL SEGMENTATION

In the divergence test, the choise of the param-
eter values of & and A is important to improve
the performance of phoneme segmentation, It is
petrferable to choose different values for vowel /
nasal segment and others, The vowel / nasal seg-
mentation uses the total energy. ZCR, and four
frequency band energies as the feature sets™ Here
we choose ¢=0.2, A=40 for vowel / nasal scunds

and d=(.8, A=80 for others.

VI. COMIPUTER SIMULATION AND DISCUSSION

A block diagram for cur phoneme segmentation
method is shown in Fig.6. Computer simulation
is done to test the speaker-independence of our
algorithm using speech data extracted from 3 male
speakers. The segmentation results on this exper-
iment is shown in Table 2. From the simulation
results, the two-step compensation can reduce 2
% and 10% of non-detection errors and false alarm
errors, respectively, Table 3 shows that, conside-
ring the number of short segments, the non-det-
ection error rate is really nothing but 4.96%. The

Q07 WA 10 % 5 %(02991)
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Fig.6. Block diagram of the propesed phoneme segmentation
algorithm

Tabte 2. Results on the phoneme segmentation,

Turbulence
noise detection

Divergence
No.of test

Speaker phonemes  ND FA ND FA ND FA

A 136 15 43 13 45 14 %

B 133 15 38 9 43 10

c 134 16 R 15 H 16 2

47 1310 K1} 122 40 75

Total | 308 . .
(11.66%3(27.54%)| (9.18%) [(30.27%)| (9.93%) | (19.6%)

ND : Non-detection error
FA . False alarm ermror

Table 3. The number of shart segments and oversegments
in false alarm error,

No.of Drvergence
Speaker short phonemes t:te &rm Smothing
A 10 104 /43 113 /38 56/ 30
B 8 B4 113/43 /3
C 9 7/2% 84/3% 51/24

average number of segments in case of oversegm-
entation when false alarm errors occur is reduccd
from 247 to 2.16. Finally, we observe the boundary

alignment errors. Fig.7(a) shows the histogram
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of the segmentation boundary errors versus time
(ms) for speaker A. For example, a bar on the
time axis -10ms indicates that the probability the
time diference of an actual bhoundary from the
segmented boundary is within 10ms, is 0.43. If we
allow the difference within430ms, the correct
segmentation rate becomes 90% and the rate
becomes 99% as shown in Fig.7(b) if we allow+
50ms difference.

Parcant (%)

Percant (%)

(b)

fig.7. Distribution of the boundary alignment errors. (a)
Histogram of the correct segmentation boundaries
according to the time of the boundary diference
between the actual boundary and segmented boundary
for speaker A, (b) Cumulative correction rate of the

proposed phoneme segementation system with respect
to the time of the boundary diference.

VI. CONCLUSIONS

In this paper, we propose an automatic phonemne
segmentation method based on the divergence test.
Two step compensation techniques, turbulence noise
detection and smoothing, are used for the postpr-

ocessing of the divergence test. Also, a coarse
vowel / nasal segmentation algorithm is used for
preprocessing to give different thresholds to the
divergence test. This effort imporves segmentation
resulis in that non-detection errors and false alarm
errors are reduced compared with the segmentation
systemn using the divergence test alone. From the
computer simulation resﬁlts of the proposed segm-
entation method, the etror rates of 10% and 20%'
are obtained for the non-detection errors and the
false alarm errors, respectively, And this experiment
reveals that performance improvements of 2% and
10% for the non-detection errors and for the false

alarm errors are obtained.
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