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Abstract—In this study, viscoelastic behaviour of comb-shaped polymer molecule in dilute solution was theoreti-
cally investigated. Adopted numerical scheme follows that of Osaki et al’s method. Relaxation time spectrum
was calculated by solving the eigenvalue equation which came from Zimm-Kilb theory for the interaction bet-
ween the polymer molecule and solvent. Based on the numerical results, the effect of branch length and polymer
molecule’s behavior at high frequency were discussed.
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1. Introduction vior varies with the number, location, and length
of branches. Their lengths are not generally uni-
Effects of macromolecular structure on the flow form like ideal branched polymers. Even though

behavior are very serious from a practical stand there were some studies about the mixture prope-
point of view. The melt-processing properties of rties of different branch length polymers, rheolo-
commercial polymers can be adjusted over wide gical behavior of unequal length branches on the
ranges by alterations in the average moleuclar same molecule was not investigated in detail, es-

weight, molecular weight distribution, and freque- pecially at high frequencies. In this study, we in-
ncy of long branches in the molecule. When the vestigate the various properties of polymers which
molecules are branched, the polymeric fluid beha- have different length branches on the same back-
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bone but no macrocyclic rings. This study is based
on the molecular theory. Molecular theories for
the viscoelastic properties of very dilute solution
of branched polymers based on the bead spring
model of flexible polymer molecules have been
studied for many years, numerically and experi-
mentally[1, 2]. In the present paper, we use the
modified Zimm-Kilb theory adopted by Osaki et
al[3] to treat comb-shaped polymers with certain
specific geometries of nonequal length branches.
The numerical calculations follow Osaki ef al’s
method.

2. Numerical Calculations

According to Zimm and Kilb theory, the redu-
ced intrinsic complex modulus [G*]z is defined
and related to the complex shear modulus as fol-
lows:

[G*]e= [G’]R + i[G”]R
=lim M/RDLG +i(G"—wons)] (€))]
>0

where c is the concentration, M the molecular
weight, R the gas constant, T the absolute tempe-
rature, @ the angular frequency, and 7, the solvent
viscosity. As in the Zimm theory, [G'1z and [G" s
are given as functions of the reduced frequency

as follows:
N
[G'Tr= 2 olt/v)¥/[1+ o3t,/t)2] )
p=1
N
[G"Ir= 2 er(tp/t)/[1+ 0T, /t)] (€))
p=1

where 1, is the pth relaxation time given by

%=8/2 kh, @

Here, ¢ is the friction coefficient of a bead, wg
is the reduced frequency the same as wt, and
k is the spring constant (k=3k T/b? where b?
is the mean square length of the spring). The
quantity A, is the pth eigen value of the H+A mat-
rix defined for the comb geometry; the H matrix
describes the hydrodynamic interaction between
beads and the A matrix represents the spring for-
ces on the beads (See appendix for details). The

matrix involves the hydrodynamic interaction pa-
rameter h* defined as follows:

W*={/(12m%% b ®

Dimensions of H and A matrices are varied depe-
nding on each branch bead numbers. The eigen-
values were calculated using IMSL subroutine
EVLSF. Similarity transformation was also used
for efficient algorithm[4].

3. Results and Discussion

In evaluating eigenvalues, there are two adjus-
table parameters, h* and total beads number N.
For comb-shaped polymers, since molecular sym-
metry does not exist, the total number of beads
N should be large. Using super computer Cray-
2 we can take very large values of N. To save
computational time, N was limited less than 1000
which is considered enough for our analysis. To
check the accuracy of our code some exemplary
tests were done to compare with Osaki ef al’s re-
sults. Present program produces exactly the same
as those cited in reference 3.

Nonequal length branched polymers are inves-
tigated by varying the number of beads on each
branch. The number of beads between the bran-
ches was set as 30. Total number of branches was
fixed at 10. The long branch bead number was
set as 30 and short branch bead number was set
at 5. In this study we put a limit on the length
of long branches, not longer than branch point
distance on the backbone because, if the branch
length is too long, the molecule structure might
be approximated better by star-comb shape poly-
mers rather than comb-shape polymers.

Fig. 1 and 2 show the behavior of reduced sto-
rage and loss modulus when the hydrodynamic
interaction is negligible (Rouse dynamics) and
when it is dominant (Zimm dynamics). As well
known, the reduced intrinsic moduli as functions
of wr are independent of M as long as it is not
too large, since the sums are essentially indepen-
dent of N, the arbitrary number of submolecules,
i. e, they are indistinguishable from the correspo-
nding sums with N=c. As presented in equa-
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Fig. 1. Logarithmic plots of [G']r and [G"]z vs ®S;
for a linear molecule when hydrodynamic in-
teraction is negligible. h*=0 (following Rouse
theory)

OStorage modulus; @Loss modulus.

tions (2) and (3), when hydrodynamic interaction
is negligible (Rouse dynamics) reduced storage
modulus is proportional to the second power of
wr while reduced loss modulus is proportional to
the first power of wr in low frequency region. In
high frequency range, both reduced moduli show
the slope of 1/2 as expected. On the other hand,
when the hydrodynamic interaction is dominant,
the slopes in low frequency range is 1 and 2 for
reduced loss modulus and storage modulus respe-
ctively, but the slope on the logarithmic plot at
higher frequencies is 2/3 and reduced storage
modulus and loss modulus are not equal but differ
by a factor of \/3 (Ferry[5]). These facts are well
represented in Fig. 1 and 2. In Fig. 2, the slopes
at high frequency are not exactly parallel because
hydrodynamic interaction parameter is not enough
big (h*=0.25). In dominant hydrodynamic interac-
tion regime, the slope of modulus on the logarith-
mic plot at higher frequency is 2/3 since all T,
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Fig. 2. Logarithmic plots of [G'Jz and [G"]x vs ®S,
for a linear molecule when hydrodynamic in-
teraction is dominant. h*=0.25 (following

Zimm theory)
[OStorage modulus; @Loss modulus.

except the first few are proportional to p~%° whe-

reas they are proportional to p~?

in free-draining
case (negligible hydrodynamic interaction).

Generally it is well known that branched poly-
mers have a lower viscosity than that of linear
polymers of the same molecular weight. At low
concentration, the viscosity ratio of branched poly-
mer to linear polymer depends primarily on the
ratio of gyration, g'=S/S;. This parameter was
calculated from eq. (32) of Zimm-Kilb paper[3].
According to it,

g’:(kz1 1A ranches (kZ1 1A Yinear ®)
Inverse of the smallest eigenvalue, 1/A;, correspo-
nding to longest relaxation time is presented in
Fig. 3. It decreases with the fraction of short chain
when the value of h* was set as 0.25. Calculated
g’ is shown in Fig. 4. As we know, g’ increases
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Fig. 3. Inverse of the smallest eigenvalue correspon-
ding to the longest relaxation time vs short
branch portion when h*=0.25.
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Fig. 4. Ratio of the square of radius of gyration vs
short branch portion.

with short chain fraction which means the mole-
cular structure resembles that of the linear mole-
cule. Even though they are not exactly on the
straight line, we can see that g’ rises almost linea-
rly with short chain fraction except near the por-
tion of 0.1 where the molecule structure is almost
the same as a linear polymer.

Plots of [G'Jz and [G"]; vs log wS, are shown
in Fig. 5 and 6 where S, is defined as

N

SEPRNS Q)
p=1

[G'Jk reaches almost a constant value at high fre-

quency range whereas [G"]g reaches a maximum
at some frequency and then decreases. At high
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Fig. 5. Reduced storage modulus vs »S, when h*=
0.25.
O All long branches; @ Half long branches;
A All short branches.
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Fig.6. Reduced loss modulus vs ®»S; when h*=
0.25.
O All long branches; @ Half long branches;
& All short branches.

frequency, individual molecules are stretched, ac-
cording to the beads-and-springs model. A crosso-
ver from G"~w*® to G"=n,w is therefore predic-
ted. In the beads-and-springs description, a poly-
mer molecule contributes nothing to the viscous
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dissipation if the deformation is too fast even the
submolecules to relax. Then, the polymer contri-
bution to the dynamic viscosity, which is defined
as n,' =G"/w—n; is ideally predicted to approach
zero at high frequency as shown in Fig. 12 later
[6]. As @ increases, all elastic motions available
to the molecule are eventually exhausted, and G’
reaches a plateau. Even though n," should have
zero value at high frequency, in real dilute poly-
mer solutions, short segments of polymer act like
rigid structures past which solvent must flow, the-
reby exerting drag and dissipating energy because
it is unable to deform. In this high frequency limit,
the dilute solution then acts like a suspension of
rigid particles, and n'=G"/» approaches a cons-
tant value. As mentioned by Larson[6], the true
situation is no doubt more complicated than this,
with a role being played by specific steric and
energetic interactions between polymer and sol-
vent. Depending on its interactions with the sol-

800 u T T oy T

[G]r

Omega*S1

Fig.7. Reduced storage modulus vs ©S; when h*=
0.49.

O All long branches; @ Half long branches;
~ All short branches.
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vent, a polymer can either reduce or enhance sol-
vent structure, thereby affecting its ability to dis-
sipate energy. The maximum peak position in Fig
6 moves to low frequency side with increasing
short branch portion, which means the relaxation
times of the chain decreases with more short bra-
nches.

The change of h* value affects the behaviours
of [G')r and [G"Jz. Increase of interaction para-
meter reduces polymer relaxation times. This im-
plicates the effect of hydrodynamic interaction is
to shorten the longer relaxation times and thereby
compress the relaxation spectrum. So, [G'Jr rea-
ches a plateau value at lower frequency and [G"]r
reaches the peak value at lower frequency as
shown in Fig 7 and 8. Fig 9 compares the storage
moduli at high frequency with different interaction
parameters.

An important parameter governing elastic res-
ponse is JO, the steady-state recoverable shear
compliance. Broadly speaking, J? characterizes the
elastic recoil that occurs when the external forces
producing a steady flow are suddenly removed.
In steady shear flow the shear stress, o, and the
amount of shear recovery v,, are related by y,=
J%. One expects to find smaller values of J? for
branched polymers. In dilute solutions J° for bran-
ched polymers is indeed smaller than that of li-
near polymers and it is also true with the polymer
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Fig.8. Reduced loss modulus vs ®S, when h*=
0.49.

O All long branches; @ Half long branches;
A All short branches.
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Fig. 9. Reduced storage modulus vs S,
O All long branches when h*=0.25; A All
short branches when h*=0.25; @ All long
branches when h*=0.49; a All short bran-
ches when h*=0.49.
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Fig. 10. Reduced steady state recoverable shear
compliance vs short branch portion.

having short branches. The reduced steady-state

recoverable shear compliance can be obtained
from the ratio of S,/S;?> where S, is defined as

N
So= D (gp/T1)? ®)
p=1
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Fig. 11. Reduced storage compliance vs S, (the
number in the parenthesis means the short
branch portion).
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Fig. 12. Real part of reduced complex viscosity vs
®S;. Short branch portion is m=0, 0=0.3,
4=05 0=07 @=10.

It is shown in Fig 10 against short chain fraction.
Since storage modulus decreases with short chain
fraction, J? increases with it. J° can be obtained
in another way as
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Fig. 13. Reduced steady state viscosity at zero shear
rate.
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where 7 is the steady-state viscosity at zero shear
rate. The reduced storage compliance J'(w)=G'(®)
/1G* (w)|? is plotted as a function of ®wS; in Fig
11. The behavior of J° is very sensitive to short
branch fraction. Also from Fig 11, we can see that
it rises steeply when the polymer molecule struc-
ture resembles that of a linear polymer, i.e, when
the short branch fraction reaches 1. This is similar
to the behavior of the square of radius of gyration.
In the mean fraction they rise almost linearly. Fig
12 shows the real part of reduced complex visco-
sity vs @S;. As we can see it reaches a constant
value at high frequency. This agrees with previous
interpretation of the behavior of G' and G” at high
frequency. The values of reduced steady-state vis-
cosity at zero shear rate can be obtained from
this figure because

NoR= f: G dt=lim

@0

G”

___(_(’))_. (10)
®

In decreases almost linearly with the short branch

fraction as shown in Fig 13.

4. Concluding Remarks

We briefly look at the behavior of dilute comb-
shape polymers which have different length bran-
ches on their backbone. Generally, the behaviour
of unequal length branched comb-shape polymers
resembles that of binary blends of different mole-

fash A 39 A 2%, 1991

et
S

A%

3

cular weight polymers in many points[7]. When
they have different length branches, their viscoe-
lastic properties changes almost linearly with
short branch fraction except near 1 where the pol-
ymer structure resembles that of linear polymers,
which brings about the rapid property change. The
results imply that overall structure of branched
polymers cannot be exactly determined from
rheological property measurement alone and ex-
perimental result only represents their averaged
superficial behavior. Comb-shaped branched poly-
mer’s behavior at high frequency reminds the im-
portance of interaction parameter depending on
which a polymer can either reduce or enhance
solvent structure, thereby affecting its ability to
dissipate energy, since strong hydrodynamic inte-
raction effect is to shorten the longer relaxation
times and thereby compress the relaxation spect-
rum.
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Appendix

In Zimm-Kilb model calculation of relaxation ti-
mes is from characteristic equation of H-A=\ I
where H matrix describes the hydrodynamic inte-
raction between beads. The H matrix includes the
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hydrodynamic interaction parameter h* defined
below (See reference 3 for the derivation of these
equations). When we set N; as the number of
branches, Ny, the number of beads on branch i,
N;—1 the number of beads between branch poi-
nts, Ny the number of beads on the backbone
(N,=(Ns+1)N,—1), the total number of the beads
N=N,+sum of Ny, the size of H and A are NXN.
The H matrix for a comb polymer is

H=[H. H. Hx . . H,y
H, 1T H-, Hjo " * H, ¥
H..” Hyu' Ho . . Hoy
H, Hif-1y
LHy"  Ha/  Hi Hy-1,/ H-,

where

H G, )=8;+1—8)h*(2/li—jh"*

i, j=1to N,
H_.(i, )=8;+(1—8ph*2/li—j)”
i, ]:1 to Nbf

Ha(G, D=h*@/[j+li—k NI
i=1to N,, j=1 to Ny
Hyu(, D=h*@/[i+j+ [k—1IN,])**
i=1 to Nbf, j:1 to Nbf k, I=1 to Nf

Ag b WE) 32 Exe] PR ASd BH AT g5

and h*={/(12n%2 b n, hydrodynamic interaction
coefficient. The A matrix represents the spring
forces on the beads. The A matrix for a comb
polymer is

A= (A, a az : * a
alT A1 0 * . 0
azT 0 A1

A, 0
La/ 0 0 : 0 A,

where A,’s components are
A;=1, when i=1 or N,
3, when i=j N, and j=1 to N;
2, otherwise
A; i+1=—1, when i=1 to Ny—1
Aity, i=—1, when i=1 to Ny—1
A; ;=0, when j2i+2 or j<i—2 with i, j=1 to N,
and A,’s components are

Ay;=2
A iv1=—1, when i=1 to Ny—1
Ay, 7=—1, when i=1 to Ny—1

othwrwise A; ;=0 and a,’s components
are a;=—1 when i=k N, and j=1

0 otherwise

i=1 to Ny, j=1 to Ny and k=1 to N,
Superscript T means the transpose of the matrix.
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